Fractal Functions and Wavelet Expansions Based on Several Scaling Functions
We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (19...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1994-09, Vol.78 (3), p.373-401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Journal of approximation theory |
container_volume | 78 |
creator | Geronimo, J.S. Hardin, D.P. Massopust, P.R. |
description | We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R. |
doi_str_mv | 10.1006/jath.1994.1085 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_1994_1085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904584710859</els_id><sourcerecordid>S0021904584710859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e8c2ece74943f040f5595eb700ea0d26ccfbfec27bd352bb26a7d7542eaf9c7d3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKtXz_sHtk6yyW5z1NKqWPBQxWPITiaasu6WZC367921gidPwxv4Ho-PsUsOMw5QXm1t_zbjWsshztURm3DQZQ6ygGM2ARA81yDVKTtLaQvAuVJ8wh5W0WJvm2z10WIfujZltnXZi91TQ322_NzZNv28b2wil3VttqE9xYHYoG1C-_pHnrMTb5tEF793yp5Xy6fFXb5-vL1fXK9zLLToc5qjIKRKall4kOCV0orqCoAsOFEi-toTiqp2hRJ1LUpbuUpJQdZrrFwxZbNDL8YupUje7GJ4t_HLcDCjCjOqMKMKM6oYgPkBoGHVPlA0CQO1SC5Ewt64LvyHfgM8bma9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractal Functions and Wavelet Expansions Based on Several Scaling Functions</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Geronimo, J.S. ; Hardin, D.P. ; Massopust, P.R.</creator><creatorcontrib>Geronimo, J.S. ; Hardin, D.P. ; Massopust, P.R.</creatorcontrib><description>We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.1994.1085</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of approximation theory, 1994-09, Vol.78 (3), p.373-401</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e8c2ece74943f040f5595eb700ea0d26ccfbfec27bd352bb26a7d7542eaf9c7d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jath.1994.1085$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Geronimo, J.S.</creatorcontrib><creatorcontrib>Hardin, D.P.</creatorcontrib><creatorcontrib>Massopust, P.R.</creatorcontrib><title>Fractal Functions and Wavelet Expansions Based on Several Scaling Functions</title><title>Journal of approximation theory</title><description>We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R.</description><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKtXz_sHtk6yyW5z1NKqWPBQxWPITiaasu6WZC367921gidPwxv4Ho-PsUsOMw5QXm1t_zbjWsshztURm3DQZQ6ygGM2ARA81yDVKTtLaQvAuVJ8wh5W0WJvm2z10WIfujZltnXZi91TQ322_NzZNv28b2wil3VttqE9xYHYoG1C-_pHnrMTb5tEF793yp5Xy6fFXb5-vL1fXK9zLLToc5qjIKRKall4kOCV0orqCoAsOFEi-toTiqp2hRJ1LUpbuUpJQdZrrFwxZbNDL8YupUje7GJ4t_HLcDCjCjOqMKMKM6oYgPkBoGHVPlA0CQO1SC5Ewt64LvyHfgM8bma9</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Geronimo, J.S.</creator><creator>Hardin, D.P.</creator><creator>Massopust, P.R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940901</creationdate><title>Fractal Functions and Wavelet Expansions Based on Several Scaling Functions</title><author>Geronimo, J.S. ; Hardin, D.P. ; Massopust, P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e8c2ece74943f040f5595eb700ea0d26ccfbfec27bd352bb26a7d7542eaf9c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geronimo, J.S.</creatorcontrib><creatorcontrib>Hardin, D.P.</creatorcontrib><creatorcontrib>Massopust, P.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geronimo, J.S.</au><au>Hardin, D.P.</au><au>Massopust, P.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal Functions and Wavelet Expansions Based on Several Scaling Functions</atitle><jtitle>Journal of approximation theory</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>78</volume><issue>3</issue><spage>373</spage><epage>401</epage><pages>373-401</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.1994.1085</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9045 |
ispartof | Journal of approximation theory, 1994-09, Vol.78 (3), p.373-401 |
issn | 0021-9045 1096-0430 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jath_1994_1085 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Fractal Functions and Wavelet Expansions Based on Several Scaling Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20Functions%20and%20Wavelet%20Expansions%20Based%20on%20Several%20Scaling%20Functions&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Geronimo,%20J.S.&rft.date=1994-09-01&rft.volume=78&rft.issue=3&rft.spage=373&rft.epage=401&rft.pages=373-401&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.1994.1085&rft_dat=%3Celsevier_cross%3ES0021904584710859%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021904584710859&rfr_iscdi=true |