Fractal Functions and Wavelet Expansions Based on Several Scaling Functions

We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (19...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1994-09, Vol.78 (3), p.373-401
Hauptverfasser: Geronimo, J.S., Hardin, D.P., Massopust, P.R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1994.1085