Fractal Functions and Wavelet Expansions Based on Several Scaling Functions
We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (19...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 1994-09, Vol.78 (3), p.373-401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1006/jath.1994.1085 |