The Asymptotics of a Continuous Analogue of Orthogonal Polynomials

Szegö polynomials are associated with weight functions on the unit circle. M. G. Krein introduced a continuous analogue of these, a family of entire functions of exponential type associated with a weight function on the real line. An investigation of the asymptotics of the resolvent kernel of sin(x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1994-04, Vol.77 (1), p.51-64
1. Verfasser: Widom, H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Szegö polynomials are associated with weight functions on the unit circle. M. G. Krein introduced a continuous analogue of these, a family of entire functions of exponential type associated with a weight function on the real line. An investigation of the asymptotics of the resolvent kernel of sin(x − y)/π(x − y) on [0, s] leads to questions of the asymptotics of the Krein functions associated with the characteristic function of the complement of the interval [−1, 1]. Such asymptotics are determined here, and this leads to answers to certain questions involving the above-mentioned kernel, questions arising in the theory of random matrices.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1994.1033