Complex Zolotarev Polynomials on the Real Interval [−1, 1]

We consider complex Zolotarev polynomials of degree n on [−1, 1], i.e., monic polynomials of degree n with the second coefficient assigned to a given complex number ρ, that have minimum Chebyshev norm on [−1, 1]. They can be characterized either by n or by n+1 extremal points. We show that those cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 1993-03, Vol.72 (3), p.317-328
Hauptverfasser: Detaille, C., Thiran, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider complex Zolotarev polynomials of degree n on [−1, 1], i.e., monic polynomials of degree n with the second coefficient assigned to a given complex number ρ, that have minimum Chebyshev norm on [−1, 1]. They can be characterized either by n or by n+1 extremal points. We show that those corresponding to n extrema are closely related to real Zolotarev polynomials on [−1, 1], so that we distinguish between a trigonometric case where an explicit expression is given and the more complicated elliptic case. The classification of the parameters ρ that lead to one of the above cases is provided.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1993.1025