Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions

We present an efficient O(n+1/ε4.5-time algorithm for computing a (1+ε)-approximation of the minimum-volume bounding box of n points in R3. We also present a simpler algorithm whose running time is O(nlogn+n/ε3). We give some experimental results with implementations of various variants of the secon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 2001-01, Vol.38 (1), p.91-109
Hauptverfasser: Barequet, Gill, Har-Peled, Sariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an efficient O(n+1/ε4.5-time algorithm for computing a (1+ε)-approximation of the minimum-volume bounding box of n points in R3. We also present a simpler algorithm whose running time is O(nlogn+n/ε3). We give some experimental results with implementations of various variants of the second algorithm.
ISSN:0196-6774
1090-2678
DOI:10.1006/jagm.2000.1127