Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions
We present an efficient O(n+1/ε4.5-time algorithm for computing a (1+ε)-approximation of the minimum-volume bounding box of n points in R3. We also present a simpler algorithm whose running time is O(nlogn+n/ε3). We give some experimental results with implementations of various variants of the secon...
Gespeichert in:
Veröffentlicht in: | Journal of algorithms 2001-01, Vol.38 (1), p.91-109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an efficient O(n+1/ε4.5-time algorithm for computing a (1+ε)-approximation of the minimum-volume bounding box of n points in R3. We also present a simpler algorithm whose running time is O(nlogn+n/ε3). We give some experimental results with implementations of various variants of the second algorithm. |
---|---|
ISSN: | 0196-6774 1090-2678 |
DOI: | 10.1006/jagm.2000.1127 |