Speeding Up Dynamic Programming without Omitting any Optimal Solution and Some Applications in Molecular Biology
We extend the algorithm of Galil and Giancarlo, which speeds up dynamic programming in the case of concave cost functions, such that a compact representation of all optimal solutions is computed. Compared to the Galil–Giancarlo algorithm our time bound grows only by a small constant factor. With a c...
Gespeichert in:
Veröffentlicht in: | Journal of algorithms 2000-05, Vol.35 (2), p.129-168 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the algorithm of Galil and Giancarlo, which speeds up dynamic programming in the case of concave cost functions, such that a compact representation of all optimal solutions is computed. Compared to the Galil–Giancarlo algorithm our time bound grows only by a small constant factor. With a compact representation, we develop efficient algorithms for the solution of problems in molecular biology concerning the computation of all optimal local alignments and all optimal subalignments in genetic sequences. |
---|---|
ISSN: | 0196-6774 1090-2678 |
DOI: | 10.1006/jagm.2000.1078 |