Edge-Coloring Bipartite Graphs

Given a bipartite graph G with n nodes, m edges, and maximum degree Δ, we find an edge-coloring for G using Δ colors in time T+O(mlogΔ), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k≤Δ. Together with best known bounds for T this implies on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms 2000-02, Vol.34 (2), p.390-396
Hauptverfasser: Kapoor, Ajai, Rizzi, Romeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a bipartite graph G with n nodes, m edges, and maximum degree Δ, we find an edge-coloring for G using Δ colors in time T+O(mlogΔ), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k≤Δ. Together with best known bounds for T this implies on O(mlogΔ+mΔlogmΔlog2Δ) edge-coloring algorithm which improves on the O(mlogΔ+mΔlogmΔlog3Δ) algorithm of Hopcroft and Cole. Our algorithm can also be used to find a (Δ+2)-edge-coloring for G in time O(mlogΔ). The previous best approximation algorithm with the same time bound needed Δ+logΔ colors.
ISSN:0196-6774
1090-2678
DOI:10.1006/jagm.1999.1058