Edge-Coloring Bipartite Graphs
Given a bipartite graph G with n nodes, m edges, and maximum degree Δ, we find an edge-coloring for G using Δ colors in time T+O(mlogΔ), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k≤Δ. Together with best known bounds for T this implies on...
Gespeichert in:
Veröffentlicht in: | Journal of algorithms 2000-02, Vol.34 (2), p.390-396 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a bipartite graph G with n nodes, m edges, and maximum degree Δ, we find an edge-coloring for G using Δ colors in time T+O(mlogΔ), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k≤Δ. Together with best known bounds for T this implies on O(mlogΔ+mΔlogmΔlog2Δ) edge-coloring algorithm which improves on the O(mlogΔ+mΔlogmΔlog3Δ) algorithm of Hopcroft and Cole. Our algorithm can also be used to find a (Δ+2)-edge-coloring for G in time O(mlogΔ). The previous best approximation algorithm with the same time bound needed Δ+logΔ colors. |
---|---|
ISSN: | 0196-6774 1090-2678 |
DOI: | 10.1006/jagm.1999.1058 |