Tight Closure and Differential Simplicity

The behavior of the Hasse–Schmidt algebra under étale extension is used to show that the Hasse–Schmidt algebra of a smooth algebra of finite type over a field equals the ring of differential operators. These techniques show that the formation of Hasse–Schmidt derivations does not commute with locali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2000-06, Vol.228 (2), p.457-476
1. Verfasser: Traves, William N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The behavior of the Hasse–Schmidt algebra under étale extension is used to show that the Hasse–Schmidt algebra of a smooth algebra of finite type over a field equals the ring of differential operators. These techniques show that the formation of Hasse–Schmidt derivations does not commute with localization, providing a counterexample to a question of Brown and Kuan; their conjecture is reformulated in terms of the Hasse–Schmidt algebra. These techniques also imply that a smooth domain R is differentially simple. Tight closure is used to show that the test ideal is Hasse–Schmidt stable. Indeed, differentially simple rings of prime characteristic are strongly F-regular.
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1999.8271