Field Theory for Function Fields of Plane Quartic Curves
Let C be a smooth plane quartic curve over a field k and k(C) be a rational function field of C. We develop a field theory for k(C) in the following method. Let πP be the projection from C to a line l with a center P∈P2. The πP induces an extension field k(C)/k(P1), where k(P1) is a maximal rational...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2000-04, Vol.226 (1), p.283-294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let C be a smooth plane quartic curve over a field k and k(C) be a rational function field of C. We develop a field theory for k(C) in the following method. Let πP be the projection from C to a line l with a center P∈P2. The πP induces an extension field k(C)/k(P1), where k(P1) is a maximal rational subfield. In this paper we study the extension k(C)/k(P1) from several points of view. For example, we consider the following questions: When is the extension k(C)/k(P1) Galois? What is the Galois closure of k(C)/k(P1)? |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1006/jabr.1999.8173 |