Field Theory for Function Fields of Plane Quartic Curves

Let C be a smooth plane quartic curve over a field k and k(C) be a rational function field of C. We develop a field theory for k(C) in the following method. Let πP be the projection from C to a line l with a center P∈P2. The πP induces an extension field k(C)/k(P1), where k(P1) is a maximal rational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2000-04, Vol.226 (1), p.283-294
Hauptverfasser: Miura, Kei, Yoshihara, Hisao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let C be a smooth plane quartic curve over a field k and k(C) be a rational function field of C. We develop a field theory for k(C) in the following method. Let πP be the projection from C to a line l with a center P∈P2. The πP induces an extension field k(C)/k(P1), where k(P1) is a maximal rational subfield. In this paper we study the extension k(C)/k(P1) from several points of view. For example, we consider the following questions: When is the extension k(C)/k(P1) Galois? What is the Galois closure of k(C)/k(P1)?
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1999.8173