Interpolation Domains

Call a domain D with quotient field K an interpolation domain if, for each choice of distinct arguments a1,…,an and arbitrary values c1,…,cn in D, there exists an integer-valued polynomial f (that is, f∈K[X] with f(D)⊆(D)), such that f(ai)=ci for 1≤i≤n. We characterize completely the interpolation d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2000-03, Vol.225 (2), p.794-803
Hauptverfasser: Cahen, Paul-Jean, Chabert, Jean-Luc, Frisch, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Call a domain D with quotient field K an interpolation domain if, for each choice of distinct arguments a1,…,an and arbitrary values c1,…,cn in D, there exists an integer-valued polynomial f (that is, f∈K[X] with f(D)⊆(D)), such that f(ai)=ci for 1≤i≤n. We characterize completely the interpolation domains if D is Noetherian or a Prüfer domain. In the first case, we show that D is an interpolation domain if and only if it is one-dimensional, locally unibranched with finite residue fields, in the second one, if and only if the ring Int(D)={f∈K[X]|f(D)⊆D} of integer-valued polynomials is itself a Prüfer domain. We also show that an interpolation domain must satisfy a double-boundedness condition, and thereby simplify a recent characterization of the domains D such that Int(D) is a Prüfer domain.
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1999.8151