Interpolation Domains
Call a domain D with quotient field K an interpolation domain if, for each choice of distinct arguments a1,…,an and arbitrary values c1,…,cn in D, there exists an integer-valued polynomial f (that is, f∈K[X] with f(D)⊆(D)), such that f(ai)=ci for 1≤i≤n. We characterize completely the interpolation d...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2000-03, Vol.225 (2), p.794-803 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Call a domain D with quotient field K an interpolation domain if, for each choice of distinct arguments a1,…,an and arbitrary values c1,…,cn in D, there exists an integer-valued polynomial f (that is, f∈K[X] with f(D)⊆(D)), such that f(ai)=ci for 1≤i≤n. We characterize completely the interpolation domains if D is Noetherian or a Prüfer domain. In the first case, we show that D is an interpolation domain if and only if it is one-dimensional, locally unibranched with finite residue fields, in the second one, if and only if the ring Int(D)={f∈K[X]|f(D)⊆D} of integer-valued polynomials is itself a Prüfer domain. We also show that an interpolation domain must satisfy a double-boundedness condition, and thereby simplify a recent characterization of the domains D such that Int(D) is a Prüfer domain. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1006/jabr.1999.8151 |