Finite Group Elements where No Irreducible Character Vanishes
In this paper, we consider elements x of a finite group G with the property that χ(x)≠0 for all irreducible characters χ of G. If G is solvable and x has odd order, we show that x must lie in the Fitting subgroup F(G).
Gespeichert in:
Veröffentlicht in: | Journal of algebra 1999-12, Vol.222 (2), p.413-423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider elements x of a finite group G with the property that χ(x)≠0 for all irreducible characters χ of G. If G is solvable and x has odd order, we show that x must lie in the Fitting subgroup F(G). |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1006/jabr.1999.8007 |