Group Gradings on Full Matrix Rings

We study G-gradings of the matrix ring Mn(k), k a field, and give a complete description of the gradings where all the elements ei,j are homogeneous, called good gradings. Among these, we determine the ones that are strong gradings or crossed products. If G is a finite cyclic group and k contains a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 1999-10, Vol.220 (2), p.709-728
Hauptverfasser: Dăscălescu, S., Ion, B., Năstăsescu, C., Montes, J.Rios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study G-gradings of the matrix ring Mn(k), k a field, and give a complete description of the gradings where all the elements ei,j are homogeneous, called good gradings. Among these, we determine the ones that are strong gradings or crossed products. If G is a finite cyclic group and k contains a primitive |G|th root of 1, we show how all G-gradings of Mn(k) can be produced. In particular we give a precise description of all C2-gradings of M2(k) and show that for algebraically closed k, any such grading is isomorphic to one of the two good gradings.
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1999.7897