A Remark on Gelfand Pairs of Finite Groups of Lie Type

We show how to deduce multiplicity one theorems for cuspidal representations of finite groups of Lie type from analogous results forp-adic groups. We then look at examples where the latter is known. One such example is the restriction of irreducible representations ofSO(n) toSO(n−1)9. We show that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 1998-03, Vol.201 (2), p.493-500
Hauptverfasser: Baruch, Ehud Moshe, Rallis, Steve
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how to deduce multiplicity one theorems for cuspidal representations of finite groups of Lie type from analogous results forp-adic groups. We then look at examples where the latter is known. One such example is the restriction of irreducible representations ofSO(n) toSO(n−1)9. We show that the multiplicity of a cuspidal representation of the finite groupSO(n−1) in the restriction of a cuspidal representation ofSO(n) toSO(n−1) is at most one.
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1997.7297