Homological Properties of (Graded) Noetherian PI Rings
Let R be a connected, graded, Noetherian PI ring. If injdim( R) = n < ∞, then we prove that R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to n. If gldim( R) = n < ∞, then R is a domain, finitely generated as a module over its centre and a maximal order in...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 1994-09, Vol.168 (3), p.988-1026 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1026 |
---|---|
container_issue | 3 |
container_start_page | 988 |
container_title | Journal of algebra |
container_volume | 168 |
creator | Stafford, J.T. Zhang, J.J. |
description | Let
R be a connected, graded, Noetherian PI ring. If injdim(
R) =
n < ∞, then we prove that
R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to
n. If gldim(
R) =
n < ∞, then
R is a domain, finitely generated as a module over its centre and a maximal order in its quotient division ring. Similar results hold if
R is assumed to be local rather than connected graded. Alternatively, suppose that
R is a Noetherian PI ring with gldim(
R) < ∞ such that hd(
R/
M
1) = hd(
R/
M
2) for any two maximal ideals
M
i
in the same clique. Then,
R is a direct sum of prime rings, is integral over its centre, and is Auslander-Gorenstein. If
R is a prime ring, then the centre
Z(
R) of
R is a Krull domain and
R equals its trace ring TR. Moreover, hd(
R/
M) = height(
M), for every maximal ideal
M of
R. |
doi_str_mv | 10.1006/jabr.1994.1267 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_1994_1267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869384712671</els_id><sourcerecordid>S0021869384712671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6ff858d03b1504654fcf454e4b351001c6c16d9975cf9e4a5620dde8821250b83</originalsourceid><addsrcrecordid>eNp1jzFLAzEYhoMoWKur84063Pkll6TJKEXbQtEiCm4hl3ypKW1TkkPw39ujrk7v9Lw8DyG3FBoKIB82tssN1Zo3lMnJGRlR0FAzKT_PyQiA0VpJ3V6Sq1I2AJQKrkZEztMubdM6OrutVjkdMPcRS5VCdTfL1qO_r14S9l-Yo91Xq0X1Fvfrck0ugt0WvPnbMfl4fnqfzuvl62wxfVzWrmWyr2UISigPbUcFcCl4cIELjrxrxdGZOumo9FpPhAsauRWSgfeoFKNMQKfaMWlOvy6nUjIGc8hxZ_OPoWCGajNUm6HaDNVHQJ0APFp9R8ymuIh7hz5mdL3xKf6H_gJ521yP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homological Properties of (Graded) Noetherian PI Rings</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stafford, J.T. ; Zhang, J.J.</creator><creatorcontrib>Stafford, J.T. ; Zhang, J.J.</creatorcontrib><description>Let
R be a connected, graded, Noetherian PI ring. If injdim(
R) =
n < ∞, then we prove that
R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to
n. If gldim(
R) =
n < ∞, then
R is a domain, finitely generated as a module over its centre and a maximal order in its quotient division ring. Similar results hold if
R is assumed to be local rather than connected graded. Alternatively, suppose that
R is a Noetherian PI ring with gldim(
R) < ∞ such that hd(
R/
M
1) = hd(
R/
M
2) for any two maximal ideals
M
i
in the same clique. Then,
R is a direct sum of prime rings, is integral over its centre, and is Auslander-Gorenstein. If
R is a prime ring, then the centre
Z(
R) of
R is a Krull domain and
R equals its trace ring TR. Moreover, hd(
R/
M) = height(
M), for every maximal ideal
M of
R.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.1994.1267</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of algebra, 1994-09, Vol.168 (3), p.988-1026</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6ff858d03b1504654fcf454e4b351001c6c16d9975cf9e4a5620dde8821250b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jabr.1994.1267$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Stafford, J.T.</creatorcontrib><creatorcontrib>Zhang, J.J.</creatorcontrib><title>Homological Properties of (Graded) Noetherian PI Rings</title><title>Journal of algebra</title><description>Let
R be a connected, graded, Noetherian PI ring. If injdim(
R) =
n < ∞, then we prove that
R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to
n. If gldim(
R) =
n < ∞, then
R is a domain, finitely generated as a module over its centre and a maximal order in its quotient division ring. Similar results hold if
R is assumed to be local rather than connected graded. Alternatively, suppose that
R is a Noetherian PI ring with gldim(
R) < ∞ such that hd(
R/
M
1) = hd(
R/
M
2) for any two maximal ideals
M
i
in the same clique. Then,
R is a direct sum of prime rings, is integral over its centre, and is Auslander-Gorenstein. If
R is a prime ring, then the centre
Z(
R) of
R is a Krull domain and
R equals its trace ring TR. Moreover, hd(
R/
M) = height(
M), for every maximal ideal
M of
R.</description><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1jzFLAzEYhoMoWKur84063Pkll6TJKEXbQtEiCm4hl3ypKW1TkkPw39ujrk7v9Lw8DyG3FBoKIB82tssN1Zo3lMnJGRlR0FAzKT_PyQiA0VpJ3V6Sq1I2AJQKrkZEztMubdM6OrutVjkdMPcRS5VCdTfL1qO_r14S9l-Yo91Xq0X1Fvfrck0ugt0WvPnbMfl4fnqfzuvl62wxfVzWrmWyr2UISigPbUcFcCl4cIELjrxrxdGZOumo9FpPhAsauRWSgfeoFKNMQKfaMWlOvy6nUjIGc8hxZ_OPoWCGajNUm6HaDNVHQJ0APFp9R8ymuIh7hz5mdL3xKf6H_gJ521yP</recordid><startdate>19940915</startdate><enddate>19940915</enddate><creator>Stafford, J.T.</creator><creator>Zhang, J.J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940915</creationdate><title>Homological Properties of (Graded) Noetherian PI Rings</title><author>Stafford, J.T. ; Zhang, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6ff858d03b1504654fcf454e4b351001c6c16d9975cf9e4a5620dde8821250b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stafford, J.T.</creatorcontrib><creatorcontrib>Zhang, J.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stafford, J.T.</au><au>Zhang, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homological Properties of (Graded) Noetherian PI Rings</atitle><jtitle>Journal of algebra</jtitle><date>1994-09-15</date><risdate>1994</risdate><volume>168</volume><issue>3</issue><spage>988</spage><epage>1026</epage><pages>988-1026</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>Let
R be a connected, graded, Noetherian PI ring. If injdim(
R) =
n < ∞, then we prove that
R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to
n. If gldim(
R) =
n < ∞, then
R is a domain, finitely generated as a module over its centre and a maximal order in its quotient division ring. Similar results hold if
R is assumed to be local rather than connected graded. Alternatively, suppose that
R is a Noetherian PI ring with gldim(
R) < ∞ such that hd(
R/
M
1) = hd(
R/
M
2) for any two maximal ideals
M
i
in the same clique. Then,
R is a direct sum of prime rings, is integral over its centre, and is Auslander-Gorenstein. If
R is a prime ring, then the centre
Z(
R) of
R is a Krull domain and
R equals its trace ring TR. Moreover, hd(
R/
M) = height(
M), for every maximal ideal
M of
R.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.1994.1267</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8693 |
ispartof | Journal of algebra, 1994-09, Vol.168 (3), p.988-1026 |
issn | 0021-8693 1090-266X |
language | eng |
recordid | cdi_crossref_primary_10_1006_jabr_1994_1267 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
title | Homological Properties of (Graded) Noetherian PI Rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homological%20Properties%20of%20(Graded)%20Noetherian%20PI%20Rings&rft.jtitle=Journal%20of%20algebra&rft.au=Stafford,%20J.T.&rft.date=1994-09-15&rft.volume=168&rft.issue=3&rft.spage=988&rft.epage=1026&rft.pages=988-1026&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.1994.1267&rft_dat=%3Celsevier_cross%3ES0021869384712671%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869384712671&rfr_iscdi=true |