Homological Properties of (Graded) Noetherian PI Rings
Let R be a connected, graded, Noetherian PI ring. If injdim( R) = n < ∞, then we prove that R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to n. If gldim( R) = n < ∞, then R is a domain, finitely generated as a module over its centre and a maximal order in...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 1994-09, Vol.168 (3), p.988-1026 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R be a connected, graded, Noetherian PI ring. If injdim(
R) =
n < ∞, then we prove that
R is Auslander-Gorenstein and Cohen-Macaulay, with Gelfand-Kirillov dimension equal to
n. If gldim(
R) =
n < ∞, then
R is a domain, finitely generated as a module over its centre and a maximal order in its quotient division ring. Similar results hold if
R is assumed to be local rather than connected graded. Alternatively, suppose that
R is a Noetherian PI ring with gldim(
R) < ∞ such that hd(
R/
M
1) = hd(
R/
M
2) for any two maximal ideals
M
i
in the same clique. Then,
R is a direct sum of prime rings, is integral over its centre, and is Auslander-Gorenstein. If
R is a prime ring, then the centre
Z(
R) of
R is a Krull domain and
R equals its trace ring TR. Moreover, hd(
R/
M) = height(
M), for every maximal ideal
M of
R. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1006/jabr.1994.1267 |