Projective Schur Division Algebras Are Abelian Crossed Products

Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 1994-02, Vol.163 (3), p.795-805
Hauptverfasser: Aljadeff, E., Sonn, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 805
container_issue 3
container_start_page 795
container_title Journal of algebra
container_volume 163
creator Aljadeff, E.
Sonn, J.
description Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian crossed product ( K/ k, ƒ), where K is a radical extension of k.
doi_str_mv 10.1006/jabr.1994.1044
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_1994_1044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869384710441</els_id><sourcerecordid>S0021869384710441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-27270d058f2a16831df4b84d2e2cbc77d5da2646f8e9c0ee347bf79acfaf9da23</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoOI5uXecPdHxJM2myklI_YUBBBXchTV40Q20l6Qz4720Zt64uj8t53EPIJYMVA5BXW9umFdNaTKcQR2TBQEPBpXw_JgsAzgoldXlKznLeAjC2FmpBrp_TsEU3xj3SF_e5S_Qm7mOOQ0_r7gPbZDOtE9K6xS7anjZpyBk9nTC_c2M-JyfBdhkv_nJJ3u5uX5uHYvN0_9jUm8IJXo4Fr3gFHtYqcMukKpkPolXCc-SudVXl195yKWRQqB0glqJqQ6WtCzboqSqXZHX46-YBCYP5TvHLph_DwMz6ZtY3s76Z9SdAHQCcVu0jJpNdxN6hj2nyNX6I_6G_lgRh5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective Schur Division Algebras Are Abelian Crossed Products</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aljadeff, E. ; Sonn, J.</creator><creatorcontrib>Aljadeff, E. ; Sonn, J.</creatorcontrib><description>Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian crossed product ( K/ k, ƒ), where K is a radical extension of k.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.1994.1044</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of algebra, 1994-02, Vol.163 (3), p.795-805</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-27270d058f2a16831df4b84d2e2cbc77d5da2646f8e9c0ee347bf79acfaf9da23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jabr.1994.1044$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Aljadeff, E.</creatorcontrib><creatorcontrib>Sonn, J.</creatorcontrib><title>Projective Schur Division Algebras Are Abelian Crossed Products</title><title>Journal of algebra</title><description>Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian crossed product ( K/ k, ƒ), where K is a radical extension of k.</description><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoOI5uXecPdHxJM2myklI_YUBBBXchTV40Q20l6Qz4720Zt64uj8t53EPIJYMVA5BXW9umFdNaTKcQR2TBQEPBpXw_JgsAzgoldXlKznLeAjC2FmpBrp_TsEU3xj3SF_e5S_Qm7mOOQ0_r7gPbZDOtE9K6xS7anjZpyBk9nTC_c2M-JyfBdhkv_nJJ3u5uX5uHYvN0_9jUm8IJXo4Fr3gFHtYqcMukKpkPolXCc-SudVXl195yKWRQqB0glqJqQ6WtCzboqSqXZHX46-YBCYP5TvHLph_DwMz6ZtY3s76Z9SdAHQCcVu0jJpNdxN6hj2nyNX6I_6G_lgRh5g</recordid><startdate>19940201</startdate><enddate>19940201</enddate><creator>Aljadeff, E.</creator><creator>Sonn, J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940201</creationdate><title>Projective Schur Division Algebras Are Abelian Crossed Products</title><author>Aljadeff, E. ; Sonn, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-27270d058f2a16831df4b84d2e2cbc77d5da2646f8e9c0ee347bf79acfaf9da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aljadeff, E.</creatorcontrib><creatorcontrib>Sonn, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljadeff, E.</au><au>Sonn, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective Schur Division Algebras Are Abelian Crossed Products</atitle><jtitle>Journal of algebra</jtitle><date>1994-02-01</date><risdate>1994</risdate><volume>163</volume><issue>3</issue><spage>795</spage><epage>805</epage><pages>795-805</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian crossed product ( K/ k, ƒ), where K is a radical extension of k.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.1994.1044</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 1994-02, Vol.163 (3), p.795-805
issn 0021-8693
1090-266X
language eng
recordid cdi_crossref_primary_10_1006_jabr_1994_1044
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
title Projective Schur Division Algebras Are Abelian Crossed Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20Schur%20Division%20Algebras%20Are%20Abelian%20Crossed%20Products&rft.jtitle=Journal%20of%20algebra&rft.au=Aljadeff,%20E.&rft.date=1994-02-01&rft.volume=163&rft.issue=3&rft.spage=795&rft.epage=805&rft.pages=795-805&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.1994.1044&rft_dat=%3Celsevier_cross%3ES0021869384710441%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869384710441&rfr_iscdi=true