Projective Schur Division Algebras Are Abelian Crossed Products
Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian cr...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 1994-02, Vol.163 (3), p.795-805 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k be a field. A projective Schur Algebra over
k is a finite-dimensional
k-central simple algebra which is a homomorphic image of a twisted group algebra
k
α
G with
G a finite group and α ∈
H
2(
G,
k*). The main result of this paper is that every projective Schur division algebra is an abelian crossed product (
K/
k, ƒ), where
K is a radical extension of
k. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1006/jabr.1994.1044 |