Projective Schur Division Algebras Are Abelian Crossed Products

Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 1994-02, Vol.163 (3), p.795-805
Hauptverfasser: Aljadeff, E., Sonn, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k α G with G a finite group and α ∈ H 2( G, k*). The main result of this paper is that every projective Schur division algebra is an abelian crossed product ( K/ k, ƒ), where K is a radical extension of k.
ISSN:0021-8693
1090-266X
DOI:10.1006/jabr.1994.1044