Visual Cryptography for General Access Structures

A visual cryptography scheme for a set P ofnparticipants is a method of encoding a secret imageSIintonshadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of particip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 1996-09, Vol.129 (2), p.86-106
Hauptverfasser: Ateniese, Giuseppe, Blundo, Carlo, De Santis, Alfredo, Stinson, Douglas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A visual cryptography scheme for a set P ofnparticipants is a method of encoding a secret imageSIintonshadow images called shares, where each participant in P receives one share. Certain qualified subsets of participants can “visually” recover the secret image, but other, forbidden, sets of participants have no information (in an information-theoretic sense) onSI. A “visual” recovery for a setX⊆P consists of xeroxing the shares given to the participants inXonto transparencies, and then stacking them. The participants in a qualified setXwill be able to see the secret image without any knowledge of cryptography and without performing any cryptographic computation. In this paper we propose two techniques for constructing visual cryptography schemes for general access structures. We analyze the structure of visual cryptography schemes and we prove bounds on the size of the shares distributed to the participants in the scheme. We provide a novel technique for realizingkout ofnthreshold visual cryptography schemes. Our construction forkout ofnvisual cryptography schemes is better with respect to pixel expansion than the one proposed by M. Naor and A. Shamir (Visual cryptography,in“Advances in Cryptology—Eurocrypt '94” CA. De Santis, Ed.), Lecture Notes in Computer Science, Vol. 950, pp. 1–12, Springer-Verlag, Berlin, 1995) and for the case of 2 out ofnis the best possible. Finally, we consider graph-based access structures, i.e., access structures in which any qualified set of participants contains at least an edge of a given graph whose vertices represent the participants of the scheme.
ISSN:0890-5401
1090-2651
DOI:10.1006/inco.1996.0076