The Algebra of Timed Processes, ATP: Theory and Application

The algebra of timed processes, ATP, uses a notion of discrete global time and suggests a conceptual framework for introducing time by extending untimed languages. The action vocabularly of ATP contains a special element representing the progress of time. The algebra has, apart from standard operato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 1994-10, Vol.114 (1), p.131-178
Hauptverfasser: Nicollin, X., Sifakis, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The algebra of timed processes, ATP, uses a notion of discrete global time and suggests a conceptual framework for introducing time by extending untimed languages. The action vocabularly of ATP contains a special element representing the progress of time. The algebra has, apart from standard operators of process algebras such as prefixing by an action, alternative choice, and parallel composition, a primitive unit-delay operator. For two arguments, processes P and Q, this operator gives a process which behaves as P before the execution of a time event and behaves as Q afterwards. It is shown that several d-unit delay constructs such as timeouts and watchdogs can be expressed in terms of the unit-delay operator and standard process algebra operators. A sound and complete axiomatization for bisimulation semantics is studied and two examples illustrating the adequacy of the language for the description of timed systems are given. Finally we provide a comparison with existing timed process algebras.
ISSN:0890-5401
1090-2651
DOI:10.1006/inco.1994.1083