Bounded Quantification Is Undecidable

F≤ is a typed λ-calculus with subtyping and bounded second-order polymorphism. First introduced by Cardelli and Wegner, it has been widely studied as a core calculus for type systems with subtyping. We use a reduction from the halting problem for two-counter Turing machines to show that the subtypin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 1994-07, Vol.112 (1), p.131-165
1. Verfasser: Pierce, B.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:F≤ is a typed λ-calculus with subtyping and bounded second-order polymorphism. First introduced by Cardelli and Wegner, it has been widely studied as a core calculus for type systems with subtyping. We use a reduction from the halting problem for two-counter Turing machines to show that the subtyping and typing relations of F≤ are undecidable.
ISSN:0890-5401
1090-2651
DOI:10.1006/inco.1994.1055