Compressing Mappings on Primitive Sequences over Z/(2 e) and Its Galois Extension
Let f( x) be a strongly primitive polynomial of degree n over Z/(2 e ), η( x 0, x 1,…, x e−2 ) a Boolean function of e−1 variables and ϕ( x 0, x 1,…, x e−1 )= x e−1 + η( x 0, x 1,…, x e−2 ) G ( f( x), Z/(2 e )) denotes the set of all sequences over Z/(2 e ) generated by f( x), F 2 ∞ the set of all s...
Gespeichert in:
Veröffentlicht in: | Finite fields and their applications 2002-10, Vol.8 (4), p.570-588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f(
x) be a strongly primitive polynomial of degree
n over
Z/(2
e
), η(
x
0,
x
1,…,
x
e−2
) a Boolean function of
e−1 variables and
ϕ(
x
0,
x
1,…,
x
e−1
)=
x
e−1
+
η(
x
0,
x
1,…,
x
e−2
)
G (
f(
x),
Z/(2
e
)) denotes the set of all sequences over
Z/(2
e
) generated by
f(
x),
F
2
∞ the set of all sequences over the binary field F
2, then the compressing mapping
Φ :
G(f(x),Z/(2
e))→F
2
∞,
a=
a
0+
a
12+···+
a
e−12
e−1↦ϕ(
a
0,
a
1,…,
a
e−1) mod 2
is injective, that is, for
a
,
b
∈
G(
f(
x),
Z/(2
e
)),
a
=
b
if and only if
Φ(
a
)=
Φ(
b
), i.e.,
ϕ(
a
0,…,
a
e−1
)=
ϕ(
b
0,…,
b
e−1
) mod 2. In the second part of the paper, we generalize the above result over the Galois rings. |
---|---|
ISSN: | 1071-5797 1090-2465 |
DOI: | 10.1006/ffta.2002.0365 |