Compressing Mappings on Primitive Sequences over Z/(2 e) and Its Galois Extension

Let f( x) be a strongly primitive polynomial of degree n over Z/(2 e ), η( x 0, x 1,…, x e−2 ) a Boolean function of e−1 variables and ϕ( x 0, x 1,…, x e−1 )= x e−1 + η( x 0, x 1,…, x e−2 ) G ( f( x), Z/(2 e )) denotes the set of all sequences over Z/(2 e ) generated by f( x), F 2 ∞ the set of all s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite fields and their applications 2002-10, Vol.8 (4), p.570-588
Hauptverfasser: Wenfeng, Qi, Xuanyong, Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f( x) be a strongly primitive polynomial of degree n over Z/(2 e ), η( x 0, x 1,…, x e−2 ) a Boolean function of e−1 variables and ϕ( x 0, x 1,…, x e−1 )= x e−1 + η( x 0, x 1,…, x e−2 ) G ( f( x), Z/(2 e )) denotes the set of all sequences over Z/(2 e ) generated by f( x), F 2 ∞ the set of all sequences over the binary field F 2, then the compressing mapping Φ : G(f(x),Z/(2 e))→F 2 ∞, a= a 0+ a 12+···+ a e−12 e−1↦ϕ( a 0, a 1,…, a e−1) mod 2 is injective, that is, for a , b ∈ G( f( x), Z/(2 e )), a = b if and only if Φ( a )= Φ( b ), i.e., ϕ( a 0,…, a e−1 )= ϕ( b 0,…, b e−1 ) mod 2. In the second part of the paper, we generalize the above result over the Galois rings.
ISSN:1071-5797
1090-2465
DOI:10.1006/ffta.2002.0365