On 1-Arc-regular Graphs

A graph is 1-arc-regular if its full automorphism group acts regularly on the set of its arcs. In this paper, we investigate 1-arc-regular graphs of prime valency, especially of valency 3. First, we prove that if G is a soluble group then a (G, 1)-arc-regular graph must be a Cayley graph of a subgro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2002-10, Vol.23 (7), p.785-791
Hauptverfasser: Fang, Xingui, Wang, Jie, Yao Xu, Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph is 1-arc-regular if its full automorphism group acts regularly on the set of its arcs. In this paper, we investigate 1-arc-regular graphs of prime valency, especially of valency 3. First, we prove that if G is a soluble group then a (G, 1)-arc-regular graph must be a Cayley graph of a subgroup of G. Next we consider trivalent Cayley graphs of a finite nonabelian simple group and obtain a sufficient condition under which one can guarantee that Cay(G, S) is 1-arc-regular. Finally, as an application of the result, we construct two infinite families of 1-arc-regular trivalent Cayley graphs with insoluble automorphism groups and, in particular, one of the families is not a Cayley graph.
ISSN:0195-6698
1095-9971
DOI:10.1006/eujc.2002.0579