Subsets with Small Sums in Abelian Groups' I: the Vosper Property

LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 1997-07, Vol.18 (5), p.541-556
1. Verfasser: Hamidoune, Yahya Ould
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 5
container_start_page 541
container_title European journal of combinatorics
container_volume 18
creator Hamidoune, Yahya Ould
description LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our methods to the range of diagonal forms over finite fields, obtaining a new proof of a result of Tietäväinen. Our proof works in characteristic 2, where the question was open. We also apply our methods to obtain a new characterization for abelian Cayley graphs for which each minimum cutset originates or ends in a vertex.
doi_str_mv 10.1006/eujc.1995.0113
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_eujc_1995_0113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669885701138</els_id><sourcerecordid>S0195669885701138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-cf8950ec82a9f3e232fb166c54b03d6787a4a1482b49f9d5803b04f0fa0e2c793</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwMntjSniO82GzVRWUSpVACrBajvOsukqayE5A_fckKivTfcM9T1eHkHsGMQPIH3E8mJhJmcXAGL8gCwYyi6Qs2CVZAJvuPJfimtyEcICpknG-IKtyrAIOgf64YU_LVjcNLcc2UHekqwobp49047uxDw90-0SHPdKvLvTo6bvvphhOt-TK6ibg3V8uyefL88f6Ndq9bbbr1S4yScp5ZKyQGaARiZaWY8ITW7E8N1laAa_zQhQ61SwVSZVKK-tMAK8gtWA1YGIKyZckPv81vgvBo1W9d632J8VAzQLULEDNAtQsYALEGcBp1bdDr4JxeDRYO49mUHXn_kN_ATZBYLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Subsets with Small Sums in Abelian Groups' I: the Vosper Property</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hamidoune, Yahya Ould</creator><creatorcontrib>Hamidoune, Yahya Ould</creatorcontrib><description>LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our methods to the range of diagonal forms over finite fields, obtaining a new proof of a result of Tietäväinen. Our proof works in characteristic 2, where the question was open. We also apply our methods to obtain a new characterization for abelian Cayley graphs for which each minimum cutset originates or ends in a vertex.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1006/eujc.1995.0113</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>European journal of combinatorics, 1997-07, Vol.18 (5), p.541-556</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2433-cf8950ec82a9f3e232fb166c54b03d6787a4a1482b49f9d5803b04f0fa0e2c793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/eujc.1995.0113$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hamidoune, Yahya Ould</creatorcontrib><title>Subsets with Small Sums in Abelian Groups' I: the Vosper Property</title><title>European journal of combinatorics</title><description>LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our methods to the range of diagonal forms over finite fields, obtaining a new proof of a result of Tietäväinen. Our proof works in characteristic 2, where the question was open. We also apply our methods to obtain a new characterization for abelian Cayley graphs for which each minimum cutset originates or ends in a vertex.</description><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwMntjSniO82GzVRWUSpVACrBajvOsukqayE5A_fckKivTfcM9T1eHkHsGMQPIH3E8mJhJmcXAGL8gCwYyi6Qs2CVZAJvuPJfimtyEcICpknG-IKtyrAIOgf64YU_LVjcNLcc2UHekqwobp49047uxDw90-0SHPdKvLvTo6bvvphhOt-TK6ibg3V8uyefL88f6Ndq9bbbr1S4yScp5ZKyQGaARiZaWY8ITW7E8N1laAa_zQhQ61SwVSZVKK-tMAK8gtWA1YGIKyZckPv81vgvBo1W9d632J8VAzQLULEDNAtQsYALEGcBp1bdDr4JxeDRYO49mUHXn_kN_ATZBYLs</recordid><startdate>199707</startdate><enddate>199707</enddate><creator>Hamidoune, Yahya Ould</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199707</creationdate><title>Subsets with Small Sums in Abelian Groups' I: the Vosper Property</title><author>Hamidoune, Yahya Ould</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-cf8950ec82a9f3e232fb166c54b03d6787a4a1482b49f9d5803b04f0fa0e2c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamidoune, Yahya Ould</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamidoune, Yahya Ould</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsets with Small Sums in Abelian Groups' I: the Vosper Property</atitle><jtitle>European journal of combinatorics</jtitle><date>1997-07</date><risdate>1997</risdate><volume>18</volume><issue>5</issue><spage>541</spage><epage>556</epage><pages>541-556</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our methods to the range of diagonal forms over finite fields, obtaining a new proof of a result of Tietäväinen. Our proof works in characteristic 2, where the question was open. We also apply our methods to obtain a new characterization for abelian Cayley graphs for which each minimum cutset originates or ends in a vertex.</abstract><pub>Elsevier Ltd</pub><doi>10.1006/eujc.1995.0113</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 1997-07, Vol.18 (5), p.541-556
issn 0195-6698
1095-9971
language eng
recordid cdi_crossref_primary_10_1006_eujc_1995_0113
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
title Subsets with Small Sums in Abelian Groups' I: the Vosper Property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsets%20with%20Small%20Sums%20in%20Abelian%20Groups'%20I:%20the%20Vosper%20Property&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Hamidoune,%20Yahya%20Ould&rft.date=1997-07&rft.volume=18&rft.issue=5&rft.spage=541&rft.epage=556&rft.pages=541-556&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1006/eujc.1995.0113&rft_dat=%3Celsevier_cross%3ES0195669885701138%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0195669885701138&rfr_iscdi=true