Subsets with Small Sums in Abelian Groups' I: the Vosper Property
LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 1997-07, Vol.18 (5), p.541-556 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetGbe an abelian group containing a finite subsetBsuch that, for every non-empty finite subsetA⊂G, |A+B|≥min(|G|,|A|+|B|-1).We obtain the necessary and sufficient condition for the validity of the stronger property:For every finite subset A⊂G, such that |A|≥2, |A+B|≥min(|G|-1,|A|+|B|).We apply our methods to the range of diagonal forms over finite fields, obtaining a new proof of a result of Tietäväinen. Our proof works in characteristic 2, where the question was open. We also apply our methods to obtain a new characterization for abelian Cayley graphs for which each minimum cutset originates or ends in a vertex. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1006/eujc.1995.0113 |