The Distribution of Subword Counts is Usually Normal

Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 1993-07, Vol.14 (4), p.265-275
Hauptverfasser: Bender, Edward A., Kochman, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 4
container_start_page 265
container_title European journal of combinatorics
container_volume 14
creator Bender, Edward A.
Kochman, Fred
description Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.
doi_str_mv 10.1006/eujc.1993.1030
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_eujc_1993_1030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669883710309</els_id><sourcerecordid>S0195669883710309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2ea813ff8858e7cf219e06482fcac5d9cfd06539097f2540b017351f60cc8f5f3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQhi0EEqWwMntgTTnHsWOPqHxKFQy0s-VebOEqjSs7AfHvSVTExnR30vvc3UPINYMFA5C3btjhgmnNx5HDCZkx0KLQumanZAZs7KXU6pxc5LwDYExwPiPV-sPR-5D7FLZDH2JHo6fvw_YrpoYu49D1mYZMN3mwbftNX2Pa2_aSnHnbZnf1W-dk8_iwXj4Xq7enl-XdqkAu6r4onVWMe6-UUK5GXzLtQFaq9GhRNBp9A1JwDbr2pahgC6zmgnkJiMoLz-dkcdyLKeacnDeHFPY2fRsGZnI2k7OZnM3kPAI3R-BgM9rWJ9thyH9UxXQlhBxj6hhz4_OfwSWTMbgOXROSw940Mfx34QeibWmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Distribution of Subword Counts is Usually Normal</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bender, Edward A. ; Kochman, Fred</creator><creatorcontrib>Bender, Edward A. ; Kochman, Fred</creatorcontrib><description>Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1006/eujc.1993.1030</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Combinatorial probability ; Exact sciences and technology ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use</subject><ispartof>European journal of combinatorics, 1993-07, Vol.14 (4), p.265-275</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2ea813ff8858e7cf219e06482fcac5d9cfd06539097f2540b017351f60cc8f5f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/eujc.1993.1030$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4194556$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Edward A.</creatorcontrib><creatorcontrib>Kochman, Fred</creatorcontrib><title>The Distribution of Subword Counts is Usually Normal</title><title>European journal of combinatorics</title><description>Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.</description><subject>Combinatorial probability</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQhi0EEqWwMntgTTnHsWOPqHxKFQy0s-VebOEqjSs7AfHvSVTExnR30vvc3UPINYMFA5C3btjhgmnNx5HDCZkx0KLQumanZAZs7KXU6pxc5LwDYExwPiPV-sPR-5D7FLZDH2JHo6fvw_YrpoYu49D1mYZMN3mwbftNX2Pa2_aSnHnbZnf1W-dk8_iwXj4Xq7enl-XdqkAu6r4onVWMe6-UUK5GXzLtQFaq9GhRNBp9A1JwDbr2pahgC6zmgnkJiMoLz-dkcdyLKeacnDeHFPY2fRsGZnI2k7OZnM3kPAI3R-BgM9rWJ9thyH9UxXQlhBxj6hhz4_OfwSWTMbgOXROSw940Mfx34QeibWmW</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Bender, Edward A.</creator><creator>Kochman, Fred</creator><general>Elsevier Ltd</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930701</creationdate><title>The Distribution of Subword Counts is Usually Normal</title><author>Bender, Edward A. ; Kochman, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2ea813ff8858e7cf219e06482fcac5d9cfd06539097f2540b017351f60cc8f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Combinatorial probability</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Edward A.</creatorcontrib><creatorcontrib>Kochman, Fred</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bender, Edward A.</au><au>Kochman, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of Subword Counts is Usually Normal</atitle><jtitle>European journal of combinatorics</jtitle><date>1993-07-01</date><risdate>1993</risdate><volume>14</volume><issue>4</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.</abstract><cop>London</cop><cop>San Diego</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1006/eujc.1993.1030</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 1993-07, Vol.14 (4), p.265-275
issn 0195-6698
1095-9971
language eng
recordid cdi_crossref_primary_10_1006_eujc_1993_1030
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Combinatorial probability
Exact sciences and technology
Mathematics
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
title The Distribution of Subword Counts is Usually Normal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20Subword%20Counts%20is%20Usually%20Normal&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Bender,%20Edward%20A.&rft.date=1993-07-01&rft.volume=14&rft.issue=4&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1006/eujc.1993.1030&rft_dat=%3Celsevier_cross%3ES0195669883710309%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0195669883710309&rfr_iscdi=true