The Distribution of Subword Counts is Usually Normal
Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 1993-07, Vol.14 (4), p.265-275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 4 |
container_start_page | 265 |
container_title | European journal of combinatorics |
container_volume | 14 |
creator | Bender, Edward A. Kochman, Fred |
description | Make the set of all
n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with
n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics. |
doi_str_mv | 10.1006/eujc.1993.1030 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_eujc_1993_1030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669883710309</els_id><sourcerecordid>S0195669883710309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2ea813ff8858e7cf219e06482fcac5d9cfd06539097f2540b017351f60cc8f5f3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQhi0EEqWwMntgTTnHsWOPqHxKFQy0s-VebOEqjSs7AfHvSVTExnR30vvc3UPINYMFA5C3btjhgmnNx5HDCZkx0KLQumanZAZs7KXU6pxc5LwDYExwPiPV-sPR-5D7FLZDH2JHo6fvw_YrpoYu49D1mYZMN3mwbftNX2Pa2_aSnHnbZnf1W-dk8_iwXj4Xq7enl-XdqkAu6r4onVWMe6-UUK5GXzLtQFaq9GhRNBp9A1JwDbr2pahgC6zmgnkJiMoLz-dkcdyLKeacnDeHFPY2fRsGZnI2k7OZnM3kPAI3R-BgM9rWJ9thyH9UxXQlhBxj6hhz4_OfwSWTMbgOXROSw940Mfx34QeibWmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Distribution of Subword Counts is Usually Normal</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bender, Edward A. ; Kochman, Fred</creator><creatorcontrib>Bender, Edward A. ; Kochman, Fred</creatorcontrib><description>Make the set of all
n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with
n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1006/eujc.1993.1030</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Combinatorial probability ; Exact sciences and technology ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use</subject><ispartof>European journal of combinatorics, 1993-07, Vol.14 (4), p.265-275</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2ea813ff8858e7cf219e06482fcac5d9cfd06539097f2540b017351f60cc8f5f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/eujc.1993.1030$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4194556$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Edward A.</creatorcontrib><creatorcontrib>Kochman, Fred</creatorcontrib><title>The Distribution of Subword Counts is Usually Normal</title><title>European journal of combinatorics</title><description>Make the set of all
n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with
n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.</description><subject>Combinatorial probability</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQhi0EEqWwMntgTTnHsWOPqHxKFQy0s-VebOEqjSs7AfHvSVTExnR30vvc3UPINYMFA5C3btjhgmnNx5HDCZkx0KLQumanZAZs7KXU6pxc5LwDYExwPiPV-sPR-5D7FLZDH2JHo6fvw_YrpoYu49D1mYZMN3mwbftNX2Pa2_aSnHnbZnf1W-dk8_iwXj4Xq7enl-XdqkAu6r4onVWMe6-UUK5GXzLtQFaq9GhRNBp9A1JwDbr2pahgC6zmgnkJiMoLz-dkcdyLKeacnDeHFPY2fRsGZnI2k7OZnM3kPAI3R-BgM9rWJ9thyH9UxXQlhBxj6hhz4_OfwSWTMbgOXROSw940Mfx34QeibWmW</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Bender, Edward A.</creator><creator>Kochman, Fred</creator><general>Elsevier Ltd</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930701</creationdate><title>The Distribution of Subword Counts is Usually Normal</title><author>Bender, Edward A. ; Kochman, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2ea813ff8858e7cf219e06482fcac5d9cfd06539097f2540b017351f60cc8f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Combinatorial probability</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Edward A.</creatorcontrib><creatorcontrib>Kochman, Fred</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bender, Edward A.</au><au>Kochman, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of Subword Counts is Usually Normal</atitle><jtitle>European journal of combinatorics</jtitle><date>1993-07-01</date><risdate>1993</risdate><volume>14</volume><issue>4</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>Make the set of all
n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with
n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.</abstract><cop>London</cop><cop>San Diego</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1006/eujc.1993.1030</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 1993-07, Vol.14 (4), p.265-275 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_crossref_primary_10_1006_eujc_1993_1030 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Combinatorial probability Exact sciences and technology Mathematics Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use |
title | The Distribution of Subword Counts is Usually Normal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20Subword%20Counts%20is%20Usually%20Normal&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Bender,%20Edward%20A.&rft.date=1993-07-01&rft.volume=14&rft.issue=4&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1006/eujc.1993.1030&rft_dat=%3Celsevier_cross%3ES0195669883710309%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0195669883710309&rfr_iscdi=true |