The Distribution of Subword Counts is Usually Normal

Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 1993-07, Vol.14 (4), p.265-275
Hauptverfasser: Bender, Edward A., Kochman, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Make the set of all n-long words from a finite alphabet into a probability space with a Bernoulli distribution. The joint probability distribution for `independent' counts of subwords from a finite set usually satisfies a central limit theorem, with means and covariances growing asymptotically with n. This usually remains true even when we condition on the values of other word counts, including the possibility of excluding certain words entirely. A local limit theorem also often holds. Practical formulas are given for computing the parameters when there is no conditioning. Impractical formulas are given for the general case. We correct errata in Mood's covariance matrices for runs count statistics.
ISSN:0195-6698
1095-9971
DOI:10.1006/eujc.1993.1030