Ultraviolet B Suppresses Vitamin D Receptor Gene Expression in Keratinocytes
Keratinocytes not only produce vitamin D3in response to ultraviolet B light (UVB) and convert 25-hydroxyvitamin D3to 1α,25-dihydroxyvitamin D3(1,25(OH)2D) but also possess the vitamin D receptor (VDR) and respond to 1,25(OH)2D. We characterized the regulation of the expression of the VDR gene in pri...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 1998-05, Vol.246 (1), p.64-69 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Keratinocytes not only produce vitamin D3in response to ultraviolet B light (UVB) and convert 25-hydroxyvitamin D3to 1α,25-dihydroxyvitamin D3(1,25(OH)2D) but also possess the vitamin D receptor (VDR) and respond to 1,25(OH)2D. We characterized the regulation of the expression of the VDR gene in primary human keratinocytes following UVB irradiation. We report a marked dose-dependent down-regulation of the VDR mRNA and protein within a few hours after irradiation. This occurs independently ofde novoprotein synthesis and is not due to a change in the half-life of the VDR mRNA. Interestingly, treatment of the cells with sodium salicylate, caffeic acid phenethyl ester and tosylphenylchloromethylketone inhibited this down-regulation. Our results strongly suggest the existence of a feedback mechanism in that UVB initiates vitamin D synthesis in keratinocytes and at the same time limits VDR abundance. They also provide a rational explanation for the reported lack of any additive effect between 1,25(OH)2D and UVB phototherapy in the treatment of psoriasis. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.1998.8573 |