The Lp-Busemann–Petty Centroid Inequality

The ratio between the volume of the p-centroid body of a convex body K in Rn and the volume of K attains its minimum value if and only if K is an origin symmetric ellipsoid. This result, the Lp-Busemann–Petty centroid inequality, was recently proved by Lutwak, Yang, and Zhang. In this paper we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2002-04, Vol.167 (1), p.128-141
Hauptverfasser: Campi, S., Gronchi, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ratio between the volume of the p-centroid body of a convex body K in Rn and the volume of K attains its minimum value if and only if K is an origin symmetric ellipsoid. This result, the Lp-Busemann–Petty centroid inequality, was recently proved by Lutwak, Yang, and Zhang. In this paper we show that all the intrinsic volumes of the p-centroid body of K are convex functions of a time-like parameter when K is moved by shifting all the chords parallel to a fixed direction. The Lp-Busemann–Petty centroid inequality is a consequence of this general fact.
ISSN:0001-8708
1090-2082
DOI:10.1006/aima.2001.2036