Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory

Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 1999-10, Vol.147 (1), p.110-137
1. Verfasser: König, Steffen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 110
container_title Advances in mathematics (New York. 1965)
container_volume 147
creator König, Steffen
description Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The structure of these subalgebras is shown to be closely related to abstract Kazhdan–Lusztig theory. The main technical tool in this paper is a construction which has an exact Borel subalgebras (of a given quasi-hereditary algebra) as input and a strong exact Borel subalgebra as output. From this result, Morita invariance of the existence of exact Borel subalgebras is derived.
doi_str_mv 10.1006/aima.1999.1837
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aima_1999_1837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870899918376</els_id><sourcerecordid>S0001870899918376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-2956e264af1d674325dccbb9600d8d2ddde2299bd7f92615d1f1c856660bff573</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZe0fSBg7jWMvS1UeohJCLWvLz9aoJMhOEO2Kf-AP-RISFZasRqPRGd17ELokkBMAdqXCq8qJECInvKiO0IiAgIwCp8doBAAk4xXwU3SW0ku_igkRI6SWbWzqNZ5_KNPi6ya6LV52Wm3XTkeVcOPxU6dSyDYuOhtaFXd4-ndUtcVTndo4sA9qv7Gq_v78WnRp34Y1Xm1cE3fn6MSrbXIXv3OMnm_mq9ldtni8vZ9NF5kpKGszKkrmKJsoTyyrJgUtrTFaCwZguaXWWkepENpWXlBGSks8MbxkjIH2vqyKMcoPf01sUorOy7fYG4k7SUAOguQgSA6C5CCoB_gBcH2q9-CiTCa42vQ1ozOttE34D_0BJxJu4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>König, Steffen</creator><creatorcontrib>König, Steffen</creatorcontrib><description>Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The structure of these subalgebras is shown to be closely related to abstract Kazhdan–Lusztig theory. The main technical tool in this paper is a construction which has an exact Borel subalgebras (of a given quasi-hereditary algebra) as input and a strong exact Borel subalgebra as output. From this result, Morita invariance of the existence of exact Borel subalgebras is derived.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1006/aima.1999.1837</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Advances in mathematics (New York. 1965), 1999-10, Vol.147 (1), p.110-137</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-2956e264af1d674325dccbb9600d8d2ddde2299bd7f92615d1f1c856660bff573</citedby><cites>FETCH-LOGICAL-c326t-2956e264af1d674325dccbb9600d8d2ddde2299bd7f92615d1f1c856660bff573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aima.1999.1837$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>König, Steffen</creatorcontrib><title>Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory</title><title>Advances in mathematics (New York. 1965)</title><description>Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The structure of these subalgebras is shown to be closely related to abstract Kazhdan–Lusztig theory. The main technical tool in this paper is a construction which has an exact Borel subalgebras (of a given quasi-hereditary algebra) as input and a strong exact Borel subalgebra as output. From this result, Morita invariance of the existence of exact Borel subalgebras is derived.</description><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZe0fSBg7jWMvS1UeohJCLWvLz9aoJMhOEO2Kf-AP-RISFZasRqPRGd17ELokkBMAdqXCq8qJECInvKiO0IiAgIwCp8doBAAk4xXwU3SW0ku_igkRI6SWbWzqNZ5_KNPi6ya6LV52Wm3XTkeVcOPxU6dSyDYuOhtaFXd4-ndUtcVTndo4sA9qv7Gq_v78WnRp34Y1Xm1cE3fn6MSrbXIXv3OMnm_mq9ldtni8vZ9NF5kpKGszKkrmKJsoTyyrJgUtrTFaCwZguaXWWkepENpWXlBGSks8MbxkjIH2vqyKMcoPf01sUorOy7fYG4k7SUAOguQgSA6C5CCoB_gBcH2q9-CiTCa42vQ1ozOttE34D_0BJxJu4A</recordid><startdate>19991015</startdate><enddate>19991015</enddate><creator>König, Steffen</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991015</creationdate><title>Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory</title><author>König, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-2956e264af1d674325dccbb9600d8d2ddde2299bd7f92615d1f1c856660bff573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>König, Steffen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>König, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>1999-10-15</date><risdate>1999</risdate><volume>147</volume><issue>1</issue><spage>110</spage><epage>137</epage><pages>110-137</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The structure of these subalgebras is shown to be closely related to abstract Kazhdan–Lusztig theory. The main technical tool in this paper is a construction which has an exact Borel subalgebras (of a given quasi-hereditary algebra) as input and a strong exact Borel subalgebra as output. From this result, Morita invariance of the existence of exact Borel subalgebras is derived.</abstract><pub>Elsevier Inc</pub><doi>10.1006/aima.1999.1837</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 1999-10, Vol.147 (1), p.110-137
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1006_aima_1999_1837
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
title Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Exact%20Borel%20Subalgebras%20of%20Quasi-hereditary%20Algebras%20and%20Abstract%20Kazhdan%E2%80%93Lusztig%20Theory&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=K%C3%B6nig,%20Steffen&rft.date=1999-10-15&rft.volume=147&rft.issue=1&rft.spage=110&rft.epage=137&rft.pages=110-137&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1006/aima.1999.1837&rft_dat=%3Celsevier_cross%3ES0001870899918376%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870899918376&rfr_iscdi=true