Strong Exact Borel Subalgebras of Quasi-hereditary Algebras and Abstract Kazhdan–Lusztig Theory

Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 1999-10, Vol.147 (1), p.110-137
1. Verfasser: König, Steffen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strong exact Borel subalgebras and strong Δ-subalgebras are shown to exist for quasi-hereditary algebras which possess exact Borel subalgebras and Δ-subalgebras. This implies that the algebras associated with blocks of category O have strong exact Borel subalgebras and strong Δ-subalgebras. The structure of these subalgebras is shown to be closely related to abstract Kazhdan–Lusztig theory. The main technical tool in this paper is a construction which has an exact Borel subalgebras (of a given quasi-hereditary algebra) as input and a strong exact Borel subalgebra as output. From this result, Morita invariance of the existence of exact Borel subalgebras is derived.
ISSN:0001-8708
1090-2082
DOI:10.1006/aima.1999.1837