Electronic and optical properties of facial tris(8‐hydroxyquinoline) aluminum derivatives

In this study, we substitute facial Alq3 with (‐Mg) in positions 7 and 5 as electron donating group (EDG) and (‐Cl), (‐P) and (‐S) in position 7 as electron withdrawing groups (EWD). The ground and the first excited states geometries of facial Alq3 and their derivatives are optimized using B3lyp/6‐3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of chemistry 2023-02, Vol.61 (1), p.101-108
Hauptverfasser: Abdelfettah, Bakadi, Abderrachid, Helmaoui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we substitute facial Alq3 with (‐Mg) in positions 7 and 5 as electron donating group (EDG) and (‐Cl), (‐P) and (‐S) in position 7 as electron withdrawing groups (EWD). The ground and the first excited states geometries of facial Alq3 and their derivatives are optimized using B3lyp/6‐31G (d) methods. To analyse the electric transitions in these materials, the frontier molecular orbitals (FMOs) are calculated. It was found that the highest occupied molecular orbital (HOMO) is mainly situated on the phenoxide ring, while the lowest unoccupied molecular orbital (LUMO) is situated on the pyridyl ring, the atom C9 of phenoxide or in EWD atom. The dipole moment is calculated and analysed. The absorption and emission spectra are calculated with the TD‐DFT/6‐31G (d) method. It is seen that the electron donating or electron withdrawing groups in 7 positions caused a red‐shift in the absorption and emission spectra; what means that these substitutes have a significant effect on fac‐Alq3.
ISSN:0866-7144
2572-8288
2572-8288
DOI:10.1002/vjch.202200052