Results of Hydrogen Reduction of Iron Ore Pellets at Different Temperatures
The application of hydrogen as a reducing agent in existing blast furnaces presents a promising avenue for significantly reducing emissions. The current emphasis on hydrogen reduction may necessitate a review of parameters such as the temperature, chemical composition, porosity, reduction time, and...
Gespeichert in:
Veröffentlicht in: | Steel research international 2024-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of hydrogen as a reducing agent in existing blast furnaces presents a promising avenue for significantly reducing emissions. The current emphasis on hydrogen reduction may necessitate a review of parameters such as the temperature, chemical composition, porosity, reduction time, and reducing agent. In this study, the impact of varying the temperature of reducing iron ore pellets in hydrogen is focused on. A mercury intrusion porosimeter is used to assess the porosity postreduction. The microstructure of the reduced pellets is analyzed with the help of scanning electron microscopy. Notably, the pore size and overall porosity are higher at higher temperatures. Using an X‐ray diffractometer, it is determined that Fe
2
O
3
is reduced to Fe across all specified temperatures at different reduction times. The maximum degree of reduction is attained at 1000 °C while the minimum degree of reduction is attained at 700 °C. Considering these characteristics, researchers in the field can identify the optimal conditions, develop strategies, and advance technologies that contribute to the production of environmentally friendly steel. |
---|---|
ISSN: | 1611-3683 1869-344X |
DOI: | 10.1002/srin.202300707 |