Understanding and Controlling the Evolution of Nanomorphology and Crystallinity of Organic Bulk‐Heterojunction Blends with Solvent Vapor Annealing

Solvent vapor annealing (SVA) has been shown to significantly improve the device performance of organic bulk‐heterojunction solar cells, yet the mechanisms linking nanomorphology, crystallinity of the active layer, and performance are still largely missing. Here, the mechanisms are tackled by correl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar RRL 2022-09, Vol.6 (9), p.n/a
Hauptverfasser: Harreiß, Christina, Langner, Stefan, Wu, Mingjian, Berlinghof, Marvin, Rechberger, Stefanie, Will, Johannes, Conroy, Michele, Bangert, Ursel, Unruh, Tobias, Brabec, Christoph J., Spiecker, Erdmann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solvent vapor annealing (SVA) has been shown to significantly improve the device performance of organic bulk‐heterojunction solar cells, yet the mechanisms linking nanomorphology, crystallinity of the active layer, and performance are still largely missing. Here, the mechanisms are tackled by correlating the evolution of nanomorphology, crystallinity, and performance with advanced transmission electron microscopy methods systematically. Model system of DRCN5T:PC71BM blends are SVA treated with four solvents differing in their donor and acceptor solubilities. The choice of solvent drastically influences the rate at which the maximum device efficiency establishes, though similar values can be achieved for all solvents. The donor solubility is identified as a key parameter that controls the kinetics of diffusion and crystallization of the blend molecules, resulting in an inverse relationship between optimal annealing time and donor solubility. For the highest efficiency, optimum domain size and single‐crystalline nature of DRCN5T fibers are found to be crucial. Moreover, the π–π stacking orientation of the crystallites is directly revealed and related to the nanomorphology, providing insight into the charge carrier transport pathways. Finally, a qualitative model relating morphology, crystallinity, and device efficiency evolution during SVA is presented, which may be transferred to other light‐harvesting blends. Nanomorphology and crystallinity of solvent vapor annealed DRCN5T:PC71BM bulk heterojunction solar cells has been systematically studied using advanced electron microscopy and correlated to their efficiency. An optimum domain size and single‐crystalline nature of DRCN5T fibers are found crucial for their performance. Donor solubility controls crystallization and coarsening resulting in an inverse relationship between optimal annealing time and donor solubility.
ISSN:2367-198X
2367-198X
DOI:10.1002/solr.202200127