Analysis and Development of a Modular Fault‐Tolerant Multistring Power Converter for Solar Photovoltaic Applications

The increasing solar photovoltaic (PV) generation highlights the importance of PV systems’ scalability, reliability, and cost reduction. Herein, a modular fault‐tolerant PV multistring inverter to address this challenge is proposed. The proposed inverter features a modular dc‐dc conversion stage and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar RRL 2022-05, Vol.6 (5), p.n/a
Hauptverfasser: Filba-Martinez, Alber, Cabre-Piqueras, Claudia, Trilla, Lluís, Paradell, Pol, Domínguez-García, José L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing solar photovoltaic (PV) generation highlights the importance of PV systems’ scalability, reliability, and cost reduction. Herein, a modular fault‐tolerant PV multistring inverter to address this challenge is proposed. The proposed inverter features a modular dc‐dc conversion stage and a dc–ac conversion stage. This configuration allows scaling the inverter power rating by simply increasing the number of PV strings, associated dc‐dc modules, and dc–ac‐stage heatsink size and output‐filter inductances’ current rating. The fault‐tolerant capability allows for tolerating a first‐switch open‐circuit fault on either stage and continuing operation. This property allows increasing by half the inverter lifetime compared with nonfault‐tolerant solutions (dismissing inverter reparation and degraded mode of operation), with a low impact on the cost increase (3–7%) and an efficiency reduction after a fault occurs of only 0.33–1%, depending on the module count and fault localization. A generalized reliability assessment demonstrates that lifetime increase is achieved regardless of the number of modules. Additionally, it allows reducing the operation and maintenance costs and revenue losses due to unscheduled system shutdowns. To validate the proposed inverter, a lab–scale prototype with two modules is tested under emulated faults, validating the feasibility of the proposed inverter. A modular fault‐tolerant photovoltaic multistring inverter is proposed. Its power rating can be scaled with the dc–dc module number. The inverter fault‐tolerant capability enables postfault operation and allows increasing by half the inverter lifetime compared with nonfault‐tolerant solutions in nondegraded operation mode, with a low impact on the cost increase (3–7%) and an efficiency reduction of 0.5%.
ISSN:2367-198X
2367-198X
DOI:10.1002/solr.202100883