Inducing Directional Charge Delocalization in 3D-Printable Micro-Supercapacitors Based on Strongly Coupled Black Phosphorus and ReS 2 Nanocomposites
The growing interest in so-called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epita...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-07, Vol.20 (30), p.e2312019 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing interest in so-called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epitaxial growth strategy is proposed by synthesizing sulfide rhenium (ReS
) on exfoliated black phosphorus (E-BP) nanosheets, creating an abundance of robust interfacial linkages. Through spectroscopic analysis using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the authors investigate the interfacial environment. The well-developed coupled interface and structural stability contribute to the impressive performance of the 3D-printed E-BP@ReS
-based micro-supercapacitor, achieving a specific capacitance of 47.3 mF cm
at 0.1 mA cm
and demonstrating excellent long-term cyclability (89.2% over 2000 cycles). Furthermore, density functional theory calculations unveil the positive impact of the strongly coupled interface in the E-BP@ReS
nanocomposite on the adsorption of H
ions, showcasing a significantly reduced adsorption energy of -2.17 eV. The strong coupling effect facilitates directional charge delocalization at the interface, enhancing the electrochemical performance of electrodes and resulting in the successful construction of advanced micro-supercapacitors. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202312019 |