In Situ Constructing Ultrastable Mechanical Integrity of Single-Crystalline LiNi 0.9 Co 0.05 Mn 0.05 O 2 Cathode by Interior and Exterior Decoration Strategy
Planar gliding along with anisotropic lattice strain of single-crystalline nickel-rich cathodes (SCNRC) at highly delithiated states will induce severe delamination cracking that seriously deteriorates LIBs' cyclability. To address these issues, a novel lattice-matched MgTiO (MTO) layer, which...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-02, Vol.20 (5), p.e2305618 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Planar gliding along with anisotropic lattice strain of single-crystalline nickel-rich cathodes (SCNRC) at highly delithiated states will induce severe delamination cracking that seriously deteriorates LIBs' cyclability. To address these issues, a novel lattice-matched MgTiO
(MTO) layer, which exhibits same lattice structure as Ni-rich cathodes, is rationally constructed on single-crystalline LiNi
Co
Mn
O
(SC90) for ultrastable mechanical integrity. Intensive in/ex situ characterizations combined with theoretical calculations and finite element analysis suggest that the uniform MTO coating layer prevents direct contact between SC90 and organic electrolytes and enables rapid Li-ion diffusion with depressed Li-deficiency, thereby stabilizing the interfacial structure and accommodating the mechanical stress of SC90. More importantly, a superstructure is simultaneously formed in SC90, which can effectively alleviate the anisotropic lattice changes and decrease cation mobility during successive high-voltage de/intercalation processes. Therefore, the as-acquired MTO-modified SC90 cathode displays desirable capacity retention and high-voltage stability. When paired with commercial graphite anodes, the pouch-type cells with the MTO-modified SC90 can deliver a high capacity of 175.2 mAh g
with 89.8% capacity retention after 500 cycles. This lattice-matching coating strategy demonstrate a highly effective pathway to maintain the structural and interfacial stability in electrode materials, which can be a pioneering breakthrough in commercialization of Ni-rich cathodes. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202305618 |