New Insights into Phase-Mechanism Relationship of Mg x MnO 2 Nanowires in Aqueous Zinc-Ion Batteries
In response to the call for safer energy storage systems, rechargeable aqueous manganese-based zinc-ion (Zn-ion) batteries using mild electrolyte have attracted extensive attention. However, the charge-storage mechanism and structure change of manganese-based cathode remain controversial topics. Her...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-04, Vol.18 (13), p.e2107743 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In response to the call for safer energy storage systems, rechargeable aqueous manganese-based zinc-ion (Zn-ion) batteries using mild electrolyte have attracted extensive attention. However, the charge-storage mechanism and structure change of manganese-based cathode remain controversial topics. Herein, a systematic study to understand the electrochemical behavior and charge storage mechanism based on a 3 × 3 tunnel-structured Mg
MnO
as well as the correspondence between different tunnel structures and reaction mechanisms are reported. The energy storage mechanism of the different tunnel structure is surface faradaic dissolution/deposition coupled with an intercalation mechanism of cations in aqueous electrolyte, which is confirmed by in situ X-ray diffraction, in situ Raman and ex situ extended X-ray absorption fine structure. The deposition process at the cathode is partially reversible due to the accumulation of a birnessite layer on the surface. Compared to smaller tunnels, the 3 × 3 tunnel structure is more conducive to deposit new active materials from the electrolyte. Therefore, pristine Mg
MnO
nanowires with large tunnels display an excellent cycling performance. This work sheds light on the relationship between the tunnel structure and Mn
deposition and provides a promising cathode material design for aqueous Zn-ion batteries. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202107743 |