Functionalized MoS 2 Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy
The rising dangers of bacterial infections have created an urgent need for the development of a new generation of antibacterial nanoagents and therapeutics. A new near-infrared 808 nm laser-mediated nitric oxide (NO)-releasing nanovehicle (MoS -BNN6) is reported through the simple assembly of α-cycl...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-11, Vol.14 (45), p.e1802290 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rising dangers of bacterial infections have created an urgent need for the development of a new generation of antibacterial nanoagents and therapeutics. A new near-infrared 808 nm laser-mediated nitric oxide (NO)-releasing nanovehicle (MoS
-BNN6) is reported through the simple assembly of α-cyclodextrin-modified MoS
nanosheets with a heat-sensitive NO donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6) for the rapid and effective treatment of three typical Gram-negative and Gram-positive bacteria (ampicillin-resistant Escherichia coli, heat-resistant Escherichia faecalis, and pathogen Staphylococcus aureus). This MoS
-BNN6 nanovehicle has good biocompatibility and can be captured by bacteria to increase opportunities of NO diffusion to the bacterial surface. Once stimulated by 808 nm laser irradiation, the MoS
-BNN6 nanovehicle not only exhibits photothermal therapy (PTT) efficacy but also can precisely control NO release, generating oxidative/nitrosative stress. The temperature-enhanced catalytic function of MoS
induced by 808 nm laser irradiation simultaneously accelerates the oxidation of glutathione. This acceleration disrupts the balance of antioxidants, ultimately resulting in significant DNA damage to the bacteria. Within 10 min, the MoS
-BNN6 with enhanced PTT/NO synergetic antibacterial function achieves >97.2% inactivation of bacteria. The safe synergetic therapy strategy can also effectively repair wounds through the formation of collagen fibers and elimination of inflammation during tissue reconstruction. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.201802290 |