Four-Bits-Per-Cell Operation in an HfO 2 -Based Resistive Switching Device

The quadruple-level cell technology is demonstrated in an Au/Al O /HfO /TiN resistance switching memory device using the industry-standard incremental step pulse programming (ISPP) and error checking/correction (ECC) methods. With the highly optimistic properties of the tested device, such as self-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-10, Vol.13 (40)
Hauptverfasser: Kim, Gun Hwan, Ju, Hyunsu, Yang, Min Kyu, Lee, Dong Kyu, Choi, Ji Woon, Jang, Jae Hyuck, Lee, Sang Gil, Cha, Ik Su, Park, Bo Keun, Han, Jeong Hwan, Chung, Taek-Mo, Kim, Kyung Min, Hwang, Cheol Seong, Lee, Young Kuk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quadruple-level cell technology is demonstrated in an Au/Al O /HfO /TiN resistance switching memory device using the industry-standard incremental step pulse programming (ISPP) and error checking/correction (ECC) methods. With the highly optimistic properties of the tested device, such as self-compliance and gradual set-switching behaviors, the device shows 6σ reliability up to 16 states with a state current gap value of 400 nA for the total allowable programmed current range from 2 to 11 µA. It is demonstrated that the conventional ISPP/ECC can be applied to such resistance switching memory, which may greatly contribute to the commercialization of the device, especially competitively with NAND flash. A relatively minor improvement in the material and circuitry may enable even a five-bits-per-cell technology, which can hardly be imagined in NAND flash, whose state-of-the-art multiple-cell technology is only at three-level (eight states) to this day.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201701781