Size of nodal domains of the eigenvectors of a graph

Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2020-09, Vol.57 (2), p.393-438
Hauptverfasser: Huang, Han, Rudelson, Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 2
container_start_page 393
container_title Random structures & algorithms
container_volume 57
creator Huang, Han
Rudelson, Mark
description Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.
doi_str_mv 10.1002/rsa.20925
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rsa_20925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_rsa_20925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1095-b4ba984a457b66ca1f37aa7cf55727eb871b676152c08633777369c281477ca23</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoWKsL_0G2LqYmLx8vWUpRKxRcqOvwJk3akXamJEXQX2-nurqXs7iXw9itFDMpBNyXSjMQHswZm0jhXQNauvOxa2i8U3DJrmr9FEKgAjVh-q37SXzIvB9WtOWrYUddX0dw2CSeunXqv1I8DOXEiK8L7TfX7CLTtqab_5yyj6fH9_miWb4-v8wflk08Xpum1S15p0kbbK2NJLNCIozZGARMrUPZWrTSQBTOKoWIyvoITmrESKCm7O5vN5ah1pJy2JduR-U7SBFG3XDUDSdd9QvP-kXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Size of nodal domains of the eigenvectors of a graph</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Han ; Rudelson, Mark</creator><creatorcontrib>Huang, Han ; Rudelson, Mark</creatorcontrib><description>Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20925</identifier><language>eng</language><ispartof>Random structures &amp; algorithms, 2020-09, Vol.57 (2), p.393-438</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1095-b4ba984a457b66ca1f37aa7cf55727eb871b676152c08633777369c281477ca23</citedby><cites>FETCH-LOGICAL-c1095-b4ba984a457b66ca1f37aa7cf55727eb871b676152c08633777369c281477ca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Rudelson, Mark</creatorcontrib><title>Size of nodal domains of the eigenvectors of a graph</title><title>Random structures &amp; algorithms</title><description>Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.</description><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEURYMoWKsL_0G2LqYmLx8vWUpRKxRcqOvwJk3akXamJEXQX2-nurqXs7iXw9itFDMpBNyXSjMQHswZm0jhXQNauvOxa2i8U3DJrmr9FEKgAjVh-q37SXzIvB9WtOWrYUddX0dw2CSeunXqv1I8DOXEiK8L7TfX7CLTtqab_5yyj6fH9_miWb4-v8wflk08Xpum1S15p0kbbK2NJLNCIozZGARMrUPZWrTSQBTOKoWIyvoITmrESKCm7O5vN5ah1pJy2JduR-U7SBFG3XDUDSdd9QvP-kXs</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Huang, Han</creator><creator>Rudelson, Mark</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202009</creationdate><title>Size of nodal domains of the eigenvectors of a graph</title><author>Huang, Han ; Rudelson, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1095-b4ba984a457b66ca1f37aa7cf55727eb871b676152c08633777369c281477ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Rudelson, Mark</creatorcontrib><collection>CrossRef</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Han</au><au>Rudelson, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size of nodal domains of the eigenvectors of a graph</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2020-09</date><risdate>2020</risdate><volume>57</volume><issue>2</issue><spage>393</spage><epage>438</epage><pages>393-438</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.</abstract><doi>10.1002/rsa.20925</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2020-09, Vol.57 (2), p.393-438
issn 1042-9832
1098-2418
language eng
recordid cdi_crossref_primary_10_1002_rsa_20925
source Wiley Online Library Journals Frontfile Complete
title Size of nodal domains of the eigenvectors of a graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20of%20nodal%20domains%20of%20the%20eigenvectors%20of%20a%20graph&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Huang,%20Han&rft.date=2020-09&rft.volume=57&rft.issue=2&rft.spage=393&rft.epage=438&rft.pages=393-438&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20925&rft_dat=%3Ccrossref%3E10_1002_rsa_20925%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true