Size of nodal domains of the eigenvectors of a graph

Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2020-09, Vol.57 (2), p.393-438
Hauptverfasser: Huang, Han, Rudelson, Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider an eigenvector of the adjacency matrix of a G ( n , p ) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20925