Minimum independent dominating sets of random cubic graphs

We present a heuristic for finding a small independent dominating set D of cubic graphs. We analyze the performance of this heuristic, which is a random greedy algorithm, on random cubic graphs using differential equations, and obtain an upper bound on the expected size of D. A corresponding lower b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2002-09, Vol.21 (2), p.147-161
Hauptverfasser: Duckworth, W., Wormald, N. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a heuristic for finding a small independent dominating set D of cubic graphs. We analyze the performance of this heuristic, which is a random greedy algorithm, on random cubic graphs using differential equations, and obtain an upper bound on the expected size of D. A corresponding lower bound is derived by means of a direct expectation argument. We prove that D asymptotically almost surely satisfies 0.2641n ≤ |D| ≤ 0.27942n. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 147–161, 2002
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.10047