Minimum independent dominating sets of random cubic graphs
We present a heuristic for finding a small independent dominating set D of cubic graphs. We analyze the performance of this heuristic, which is a random greedy algorithm, on random cubic graphs using differential equations, and obtain an upper bound on the expected size of D. A corresponding lower b...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2002-09, Vol.21 (2), p.147-161 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a heuristic for finding a small independent dominating set D of cubic graphs. We analyze the performance of this heuristic, which is a random greedy algorithm, on random cubic graphs using differential equations, and obtain an upper bound on the expected size of D. A corresponding lower bound is derived by means of a direct expectation argument. We prove that D asymptotically almost surely satisfies 0.2641n ≤ |D| ≤ 0.27942n. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 147–161, 2002 |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.10047 |