Machine Learning for Maximizing the Memristivity of Single and Coupled Quantum Memristors

Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced quantum technologies (Online) 2024-04
Hauptverfasser: Hernani‐Morales, Carlos, Alvarado, Gabriel, Albarrán‐Arriagada, Francisco, Vives‐Gilabert, Yolanda, Solano, Enrique, Martín‐Guerrero, José D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning (ML) methods are proposed to characterize the memristive properties of single and coupled quantum memristors. It is shown that maximizing the memristivity leads to large values in the degree of entanglement of two quantum memristors, unveiling the close relationship between quantum correlations and memory. The results strengthen the possibility of using quantum memristors as key components of neuromorphic quantum computing.
ISSN:2511-9044
2511-9044
DOI:10.1002/qute.202300294