Long Spin Relaxation Times in CVD‐Grown Nanodiamonds

Currently, the primary applications of fluorescent nanodiamonds (FNDs) are in the area of biosensing, by using photoluminescence or spin properties of color centres, mainly represented by the nitrogen vacancy (NV) point defect. The sensitivity of NV‐FNDs to external fields is, however, limited by cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced quantum technologies (Online) 2023-12, Vol.6 (12), p.n/a
Hauptverfasser: Prooth, Jeroen, Petrov, Michael, Shmakova, Alevtina, Gulka, Michal, Cigler, Petr, D'Haen, Jan, Boyen, Hans‐Gerd, Nesladek, Milos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced quantum technologies (Online)
container_volume 6
creator Prooth, Jeroen
Petrov, Michael
Shmakova, Alevtina
Gulka, Michal
Cigler, Petr
D'Haen, Jan
Boyen, Hans‐Gerd
Nesladek, Milos
description Currently, the primary applications of fluorescent nanodiamonds (FNDs) are in the area of biosensing, by using photoluminescence or spin properties of color centres, mainly represented by the nitrogen vacancy (NV) point defect. The sensitivity of NV‐FNDs to external fields is, however, limited by crystallographic defects, which influence their key quantum state characteristics ‐ the spin longitudinal (T1) and spin transversal (T2) relaxation and coherence times, respectively. This paper reports on utilizing an advanced FND growth technique consisting of heterogeneous nucleation on pre‐engineered sites to create FNDs averaging around 60 nm in size, with mean longitudinal coherence times of 800 μ$\umu$s and a maximum over 1.8 ms, close to bulk theoretical values. This is a major, nearly ten‐fold improvement over commercially available nanodiamonds for the same size range of 50 to 150 nm. Heavy‐N doped nanodiamond shells, important for sensing events in nm proximity to the diamond surface, are fabricated and discussed in terms of re‐nucleation and twinning on {111} crystal facets. The scalability issues are discussed in order to enable the production of FND volumes matching the needs of sensing applications. On average, an eight‐fold increase in the spin relaxation time is achieved for fluorescent nanodiamonds grown by CVD as compared to commercial HPHT nanodiamonds. The technique is based on heterogeneous diamond nucleation. Also it is able to create a thin NV δ‐doped diamond shell around nanodiamond particle, aimed at sensing applications.
doi_str_mv 10.1002/qute.202300004
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qute_202300004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUTE202300004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3294-21bf473e7715c9133de3b5eafbcf91b38c27c50144f2915283e54635edcf977c3</originalsourceid><addsrcrecordid>eNqFj01OwzAQhS0EElXplnUukODful6iUApSBAJStpbj2MgosUtcVLrjCJyRk-CqCNgxmxnNvPdGHwCnCBYIQnz28ro2BYaYwFT0AIwwQygXkNLDP_MxmMT4nBSYIEI5GYFpFfxT9rByPrs3nXpTaxd8VrvexCztyseLz_ePxRA2PrtRPrRO9cG38QQcWdVFM_nuY7C8nNflVV7dLq7L8yrXBAuaY9TY9MZwjpgWiJDWkIYZZRttBWrITGOuGUSUWiwQwzNiGJ0SZtp051yTMSj2uXoIMQ7GytXgejVsJYJyBy534PIHPBnE3rBxndn-o5Z3y3r-6_0CSSpcUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long Spin Relaxation Times in CVD‐Grown Nanodiamonds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Prooth, Jeroen ; Petrov, Michael ; Shmakova, Alevtina ; Gulka, Michal ; Cigler, Petr ; D'Haen, Jan ; Boyen, Hans‐Gerd ; Nesladek, Milos</creator><creatorcontrib>Prooth, Jeroen ; Petrov, Michael ; Shmakova, Alevtina ; Gulka, Michal ; Cigler, Petr ; D'Haen, Jan ; Boyen, Hans‐Gerd ; Nesladek, Milos</creatorcontrib><description>Currently, the primary applications of fluorescent nanodiamonds (FNDs) are in the area of biosensing, by using photoluminescence or spin properties of color centres, mainly represented by the nitrogen vacancy (NV) point defect. The sensitivity of NV‐FNDs to external fields is, however, limited by crystallographic defects, which influence their key quantum state characteristics ‐ the spin longitudinal (T1) and spin transversal (T2) relaxation and coherence times, respectively. This paper reports on utilizing an advanced FND growth technique consisting of heterogeneous nucleation on pre‐engineered sites to create FNDs averaging around 60 nm in size, with mean longitudinal coherence times of 800 μ$\umu$s and a maximum over 1.8 ms, close to bulk theoretical values. This is a major, nearly ten‐fold improvement over commercially available nanodiamonds for the same size range of 50 to 150 nm. Heavy‐N doped nanodiamond shells, important for sensing events in nm proximity to the diamond surface, are fabricated and discussed in terms of re‐nucleation and twinning on {111} crystal facets. The scalability issues are discussed in order to enable the production of FND volumes matching the needs of sensing applications. On average, an eight‐fold increase in the spin relaxation time is achieved for fluorescent nanodiamonds grown by CVD as compared to commercial HPHT nanodiamonds. The technique is based on heterogeneous diamond nucleation. Also it is able to create a thin NV δ‐doped diamond shell around nanodiamond particle, aimed at sensing applications.</description><identifier>ISSN: 2511-9044</identifier><identifier>EISSN: 2511-9044</identifier><identifier>DOI: 10.1002/qute.202300004</identifier><language>eng</language><subject>chemical vapor deposition ; fluorescent nanodiamonds ; nitrogen‐vacancy (NV) spin relaxometry ; quantum sensing</subject><ispartof>Advanced quantum technologies (Online), 2023-12, Vol.6 (12), p.n/a</ispartof><rights>2023 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3294-21bf473e7715c9133de3b5eafbcf91b38c27c50144f2915283e54635edcf977c3</citedby><cites>FETCH-LOGICAL-c3294-21bf473e7715c9133de3b5eafbcf91b38c27c50144f2915283e54635edcf977c3</cites><orcidid>0000-0003-0711-7597 ; 0000-0002-2333-3305 ; 0000-0003-0215-5033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqute.202300004$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqute.202300004$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Prooth, Jeroen</creatorcontrib><creatorcontrib>Petrov, Michael</creatorcontrib><creatorcontrib>Shmakova, Alevtina</creatorcontrib><creatorcontrib>Gulka, Michal</creatorcontrib><creatorcontrib>Cigler, Petr</creatorcontrib><creatorcontrib>D'Haen, Jan</creatorcontrib><creatorcontrib>Boyen, Hans‐Gerd</creatorcontrib><creatorcontrib>Nesladek, Milos</creatorcontrib><title>Long Spin Relaxation Times in CVD‐Grown Nanodiamonds</title><title>Advanced quantum technologies (Online)</title><description>Currently, the primary applications of fluorescent nanodiamonds (FNDs) are in the area of biosensing, by using photoluminescence or spin properties of color centres, mainly represented by the nitrogen vacancy (NV) point defect. The sensitivity of NV‐FNDs to external fields is, however, limited by crystallographic defects, which influence their key quantum state characteristics ‐ the spin longitudinal (T1) and spin transversal (T2) relaxation and coherence times, respectively. This paper reports on utilizing an advanced FND growth technique consisting of heterogeneous nucleation on pre‐engineered sites to create FNDs averaging around 60 nm in size, with mean longitudinal coherence times of 800 μ$\umu$s and a maximum over 1.8 ms, close to bulk theoretical values. This is a major, nearly ten‐fold improvement over commercially available nanodiamonds for the same size range of 50 to 150 nm. Heavy‐N doped nanodiamond shells, important for sensing events in nm proximity to the diamond surface, are fabricated and discussed in terms of re‐nucleation and twinning on {111} crystal facets. The scalability issues are discussed in order to enable the production of FND volumes matching the needs of sensing applications. On average, an eight‐fold increase in the spin relaxation time is achieved for fluorescent nanodiamonds grown by CVD as compared to commercial HPHT nanodiamonds. The technique is based on heterogeneous diamond nucleation. Also it is able to create a thin NV δ‐doped diamond shell around nanodiamond particle, aimed at sensing applications.</description><subject>chemical vapor deposition</subject><subject>fluorescent nanodiamonds</subject><subject>nitrogen‐vacancy (NV) spin relaxometry</subject><subject>quantum sensing</subject><issn>2511-9044</issn><issn>2511-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFj01OwzAQhS0EElXplnUukODful6iUApSBAJStpbj2MgosUtcVLrjCJyRk-CqCNgxmxnNvPdGHwCnCBYIQnz28ro2BYaYwFT0AIwwQygXkNLDP_MxmMT4nBSYIEI5GYFpFfxT9rByPrs3nXpTaxd8VrvexCztyseLz_ePxRA2PrtRPrRO9cG38QQcWdVFM_nuY7C8nNflVV7dLq7L8yrXBAuaY9TY9MZwjpgWiJDWkIYZZRttBWrITGOuGUSUWiwQwzNiGJ0SZtp051yTMSj2uXoIMQ7GytXgejVsJYJyBy534PIHPBnE3rBxndn-o5Z3y3r-6_0CSSpcUw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Prooth, Jeroen</creator><creator>Petrov, Michael</creator><creator>Shmakova, Alevtina</creator><creator>Gulka, Michal</creator><creator>Cigler, Petr</creator><creator>D'Haen, Jan</creator><creator>Boyen, Hans‐Gerd</creator><creator>Nesladek, Milos</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0711-7597</orcidid><orcidid>https://orcid.org/0000-0002-2333-3305</orcidid><orcidid>https://orcid.org/0000-0003-0215-5033</orcidid></search><sort><creationdate>202312</creationdate><title>Long Spin Relaxation Times in CVD‐Grown Nanodiamonds</title><author>Prooth, Jeroen ; Petrov, Michael ; Shmakova, Alevtina ; Gulka, Michal ; Cigler, Petr ; D'Haen, Jan ; Boyen, Hans‐Gerd ; Nesladek, Milos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3294-21bf473e7715c9133de3b5eafbcf91b38c27c50144f2915283e54635edcf977c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>chemical vapor deposition</topic><topic>fluorescent nanodiamonds</topic><topic>nitrogen‐vacancy (NV) spin relaxometry</topic><topic>quantum sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prooth, Jeroen</creatorcontrib><creatorcontrib>Petrov, Michael</creatorcontrib><creatorcontrib>Shmakova, Alevtina</creatorcontrib><creatorcontrib>Gulka, Michal</creatorcontrib><creatorcontrib>Cigler, Petr</creatorcontrib><creatorcontrib>D'Haen, Jan</creatorcontrib><creatorcontrib>Boyen, Hans‐Gerd</creatorcontrib><creatorcontrib>Nesladek, Milos</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Advanced quantum technologies (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prooth, Jeroen</au><au>Petrov, Michael</au><au>Shmakova, Alevtina</au><au>Gulka, Michal</au><au>Cigler, Petr</au><au>D'Haen, Jan</au><au>Boyen, Hans‐Gerd</au><au>Nesladek, Milos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Spin Relaxation Times in CVD‐Grown Nanodiamonds</atitle><jtitle>Advanced quantum technologies (Online)</jtitle><date>2023-12</date><risdate>2023</risdate><volume>6</volume><issue>12</issue><epage>n/a</epage><issn>2511-9044</issn><eissn>2511-9044</eissn><abstract>Currently, the primary applications of fluorescent nanodiamonds (FNDs) are in the area of biosensing, by using photoluminescence or spin properties of color centres, mainly represented by the nitrogen vacancy (NV) point defect. The sensitivity of NV‐FNDs to external fields is, however, limited by crystallographic defects, which influence their key quantum state characteristics ‐ the spin longitudinal (T1) and spin transversal (T2) relaxation and coherence times, respectively. This paper reports on utilizing an advanced FND growth technique consisting of heterogeneous nucleation on pre‐engineered sites to create FNDs averaging around 60 nm in size, with mean longitudinal coherence times of 800 μ$\umu$s and a maximum over 1.8 ms, close to bulk theoretical values. This is a major, nearly ten‐fold improvement over commercially available nanodiamonds for the same size range of 50 to 150 nm. Heavy‐N doped nanodiamond shells, important for sensing events in nm proximity to the diamond surface, are fabricated and discussed in terms of re‐nucleation and twinning on {111} crystal facets. The scalability issues are discussed in order to enable the production of FND volumes matching the needs of sensing applications. On average, an eight‐fold increase in the spin relaxation time is achieved for fluorescent nanodiamonds grown by CVD as compared to commercial HPHT nanodiamonds. The technique is based on heterogeneous diamond nucleation. Also it is able to create a thin NV δ‐doped diamond shell around nanodiamond particle, aimed at sensing applications.</abstract><doi>10.1002/qute.202300004</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0711-7597</orcidid><orcidid>https://orcid.org/0000-0002-2333-3305</orcidid><orcidid>https://orcid.org/0000-0003-0215-5033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2511-9044
ispartof Advanced quantum technologies (Online), 2023-12, Vol.6 (12), p.n/a
issn 2511-9044
2511-9044
language eng
recordid cdi_crossref_primary_10_1002_qute_202300004
source Wiley Online Library Journals Frontfile Complete
subjects chemical vapor deposition
fluorescent nanodiamonds
nitrogen‐vacancy (NV) spin relaxometry
quantum sensing
title Long Spin Relaxation Times in CVD‐Grown Nanodiamonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Spin%20Relaxation%20Times%20in%20CVD%E2%80%90Grown%20Nanodiamonds&rft.jtitle=Advanced%20quantum%20technologies%20(Online)&rft.au=Prooth,%20Jeroen&rft.date=2023-12&rft.volume=6&rft.issue=12&rft.epage=n/a&rft.issn=2511-9044&rft.eissn=2511-9044&rft_id=info:doi/10.1002/qute.202300004&rft_dat=%3Cwiley_cross%3EQUTE202300004%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true