Magnetic resonance in ion‐beam synthesized Fe 3 Si films (computer simulation)
High dose Fe + ion implantation into Si assisted by an external magnetic field parallel to silicon surface results in the formation of thin granular film with pronounced uniaxial magnetic anisotropy in the film plane. It was suggested that the anisotropy is caused by the growth of elongated clusters...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. C 2015-01, Vol.12 (1-2), p.39-43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High dose Fe
+
ion implantation into Si assisted by an external magnetic field parallel to silicon surface results in the formation of thin granular film with pronounced uniaxial magnetic anisotropy in the film plane. It was suggested that the anisotropy is caused by the growth of elongated clusters of magnetic silicide Fe
3
Si. In the present work, the features of magnetic resonance spectra for two‐dimensional array of elongated clusters are numerically studied. Absorption spectra reveal anisotropy when observed in the magnetic field lying in the film plane. In magnetic field perpendicular to the film the dipole‐dipole interaction between the clusters results in a bimodal resonance signal at low level of the film filling. The dipolar field distribution over the (400x400) lattice for several values of the lattice filling is computer simulated. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1862-6351 1610-1642 |
DOI: | 10.1002/pssc.201400083 |