DFT Calculation about Oxygen Vacancy to Promote Adsorption of a CO Molecule on Single Au‐Supported Titanium Dioxide
The properties and behavior of a single Au atom supported anatase TiO2(001) surface are calculated using density functional theory (DFT) methods. The structures and energies of adsorbed single Au on an anatase TiO2(001) surface with surface oxygen vacancy, as well as subsurface oxygen vacancy, are s...
Gespeichert in:
Veröffentlicht in: | physica status solidi (b) 2019-03, Vol.256 (3), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The properties and behavior of a single Au atom supported anatase TiO2(001) surface are calculated using density functional theory (DFT) methods. The structures and energies of adsorbed single Au on an anatase TiO2(001) surface with surface oxygen vacancy, as well as subsurface oxygen vacancy, are systematically determined. Initially, the surface threefold coordinated oxygen vacancy adjacent to a single Au atom, rather than the surface two‐fold coordinated oxygen vacancy and subsurface threefold coordinated oxygen vacancy, results in more stability for anatase TiO2(001) surface with an Au adatom. Afterwards, the CO molecule is more strongly adsorbed on the single Au‐supported TiO2(001) surface with surface threefold coordinated oxygen vacancy when comparing to other structures. This is attributed to the more negatively charged Au single‐atom caused by a surface threefold coordinated oxygen vacancy presents concededly active for CO adsorption.
The structures and energies of adsorbed single Au on anatase TiO2(001) surface with various oxygen vacancies are systematically addressed. The surface oxygen vacancy adjacent the adsorbed atomic Au increased the stability of atomic Au and further improved the adsorption of CO molecules. This is attributed to the oxygen vacancy above resulting in the presence of a charge reservoir in atomic Au. |
---|---|
ISSN: | 0370-1972 1521-3951 |
DOI: | 10.1002/pssb.201800386 |