Spin arrangements of the first family line groups

Magnetic properties of materials are, partly or in some cases completely, determined by the ground state spin arrangements. Their symmetry is, in some cases based on the magnetic groups, but this approach is incapable to include many classes of helimagnets, and a generalization of spin space groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2012-12, Vol.249 (12), p.2558-2561
Hauptverfasser: Lazić, Nataša, Milivojević, Marko, Damnjanović, Milan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic properties of materials are, partly or in some cases completely, determined by the ground state spin arrangements. Their symmetry is, in some cases based on the magnetic groups, but this approach is incapable to include many classes of helimagnets, and a generalization of spin space groups was introduced. On the other hand, geometrical symmetries of regular quasi one‐dimensional systems, including various types of nanotubes, nanowires, or polymers, are gathered into line groups. Concerning magnetic order, it turns out that the atoms carrying spins in helimagnets usually single out quasi one‐dimensional substructure. Therefore spin line groups are necessary tool in description and classification, as well as deep understanding of properties of wide class of helimagnets. Here we derive spin groups associated to the first family line groups, and compare spin arrangements compatible with these and the corresponding magnetic groups. Presented theory is illustrated by several examples of quasi one‐dimensional helimagnets: cuprates, hexaferrites, etc.
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.201200117