Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells

In prostate cancer progression, the basal lamina switches from predominantly laminin‐5 to laminin‐10. DU‐145 prostate cancer cells were treated with either soluble laminin‐5 (20 ng/ml) or laminin‐10 (1 µg/ml) for 6, 24, and 48 hr. Total RNA was harvested for a 7,500 human cDNA microarray. Hybridizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Prostate 2006-09, Vol.66 (13), p.1381-1390
Hauptverfasser: Calaluce, Robert, Beck, Shaleen K., Bair, Elisabeth L., Pandey, Ritu, Greer, Kevin A., Hoying, Adam M., Hoying, James B., Mount, David W., Nagle, Raymond B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 13
container_start_page 1381
container_title The Prostate
container_volume 66
creator Calaluce, Robert
Beck, Shaleen K.
Bair, Elisabeth L.
Pandey, Ritu
Greer, Kevin A.
Hoying, Adam M.
Hoying, James B.
Mount, David W.
Nagle, Raymond B.
description In prostate cancer progression, the basal lamina switches from predominantly laminin‐5 to laminin‐10. DU‐145 prostate cancer cells were treated with either soluble laminin‐5 (20 ng/ml) or laminin‐10 (1 µg/ml) for 6, 24, and 48 hr. Total RNA was harvested for a 7,500 human cDNA microarray. Hybridizations were carried out in accordance with a 10 sample analysis of variance (ANOVA) statistical model. One thousand one hundred sixteen genes had measurable expression 2 standard deviations above background and 50% of spots for any given sample for all hybridizations were positive. Expression values of significantly varying genes were clustered and a list of 408 genes (P 
doi_str_mv 10.1002/pros.20393
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pros_20393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PROS20393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3953-e7029974cfdcc47618d582f89ad9bfa4bc618a53ebc0bc1b10272bec039310a63</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqVw4QGQL1yQUtZ2fo9QQQuqaEVBcLMcx0GGxIniVrRvj0NKe-NkrffbnZ1B6JzAkADQ67qp7JACS9gB6hNIIg_ADw5RH2gEnk9Y1EMn1n4COBzoMeqRMAY_jsM-WkxWpTC4EKU22ngBFibbVQRwqTItlirDH8oorNZ1o6zVlcFVjlvdpWtiKRqpTVUKLFVR2FN0lIvCqrPtO0Cv93cvo4k3nY0fRjdTT7IkYJ6KgCZJ5Ms8k9KPQhJnQUzzOBFZkubCT6X7EgFTqYRUkpQ4OzRVsjVKQIRsgK66vdIdYhuV87rRpWg2nABvk-Hthfw3GQdfdHC9Sp2pPbqNwgGXW0BYKYq8EUZqu-diQsEn4DjScd-6UJt_JPn8ebb4E_e6GW2Xar2bEc0XDyMWBfztacxvqf_-OJoHnLEfj7GKTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Calaluce, Robert ; Beck, Shaleen K. ; Bair, Elisabeth L. ; Pandey, Ritu ; Greer, Kevin A. ; Hoying, Adam M. ; Hoying, James B. ; Mount, David W. ; Nagle, Raymond B.</creator><creatorcontrib>Calaluce, Robert ; Beck, Shaleen K. ; Bair, Elisabeth L. ; Pandey, Ritu ; Greer, Kevin A. ; Hoying, Adam M. ; Hoying, James B. ; Mount, David W. ; Nagle, Raymond B.</creatorcontrib><description>In prostate cancer progression, the basal lamina switches from predominantly laminin‐5 to laminin‐10. DU‐145 prostate cancer cells were treated with either soluble laminin‐5 (20 ng/ml) or laminin‐10 (1 µg/ml) for 6, 24, and 48 hr. Total RNA was harvested for a 7,500 human cDNA microarray. Hybridizations were carried out in accordance with a 10 sample analysis of variance (ANOVA) statistical model. One thousand one hundred sixteen genes had measurable expression 2 standard deviations above background and 50% of spots for any given sample for all hybridizations were positive. Expression values of significantly varying genes were clustered and a list of 408 genes (P &lt; 0.05) with a 1.5 or greater fold change in at least one time point were chosen for further analysis. Seventy eight changed in a time‐dependent manner with laminin‐10 treatment, 85 changed with laminin‐5, and 13 showed changes with both treatments. The 408 genes that passed a paired t‐test in at least one time‐dependent category were further analyzed using Pathway Miner. One of the largest gene association networks involved signal transduction in the growth factor‐MAP kinase pathways. EGFR was validated by real‐time PCR and laminin‐10 mediated cell adhesion activated EGFR in DU‐145 cells. Both laminins appear to be important signal transducers in prostate cancer. Prostate 66: 1381–1390, 2006. © 2006 Wiley‐Liss, Inc.</description><identifier>ISSN: 0270-4137</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.20393</identifier><identifier>PMID: 16804886</identifier><identifier>CODEN: PRSTDS</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Calpain - genetics ; Calpain - metabolism ; cDNA microarray ; Cell Adhesion Molecules - physiology ; Cell Line, Tumor ; DNA, Neoplasm - genetics ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Expression Regulation, Neoplastic - genetics ; Gynecology. Andrology. Obstetrics ; Humans ; Kalinin ; Laminin - physiology ; laminin-10 ; laminin-5 ; Male ; Male genital diseases ; MAP Kinase Signaling System - genetics ; Medical sciences ; Nephrology. Urinary tract diseases ; Oligonucleotide Array Sequence Analysis ; prostate carcinoma cells ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; RNA, Neoplasm - genetics ; signal transduction ; Signal Transduction - genetics ; Time Factors ; Tumors ; Tumors of the urinary system ; Urinary tract. Prostate gland</subject><ispartof>The Prostate, 2006-09, Vol.66 (13), p.1381-1390</ispartof><rights>Copyright © 2006 Wiley‐Liss, Inc., A Wiley Company</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3953-e7029974cfdcc47618d582f89ad9bfa4bc618a53ebc0bc1b10272bec039310a63</citedby><cites>FETCH-LOGICAL-c3953-e7029974cfdcc47618d582f89ad9bfa4bc618a53ebc0bc1b10272bec039310a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpros.20393$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpros.20393$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18120410$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16804886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calaluce, Robert</creatorcontrib><creatorcontrib>Beck, Shaleen K.</creatorcontrib><creatorcontrib>Bair, Elisabeth L.</creatorcontrib><creatorcontrib>Pandey, Ritu</creatorcontrib><creatorcontrib>Greer, Kevin A.</creatorcontrib><creatorcontrib>Hoying, Adam M.</creatorcontrib><creatorcontrib>Hoying, James B.</creatorcontrib><creatorcontrib>Mount, David W.</creatorcontrib><creatorcontrib>Nagle, Raymond B.</creatorcontrib><title>Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>In prostate cancer progression, the basal lamina switches from predominantly laminin‐5 to laminin‐10. DU‐145 prostate cancer cells were treated with either soluble laminin‐5 (20 ng/ml) or laminin‐10 (1 µg/ml) for 6, 24, and 48 hr. Total RNA was harvested for a 7,500 human cDNA microarray. Hybridizations were carried out in accordance with a 10 sample analysis of variance (ANOVA) statistical model. One thousand one hundred sixteen genes had measurable expression 2 standard deviations above background and 50% of spots for any given sample for all hybridizations were positive. Expression values of significantly varying genes were clustered and a list of 408 genes (P &lt; 0.05) with a 1.5 or greater fold change in at least one time point were chosen for further analysis. Seventy eight changed in a time‐dependent manner with laminin‐10 treatment, 85 changed with laminin‐5, and 13 showed changes with both treatments. The 408 genes that passed a paired t‐test in at least one time‐dependent category were further analyzed using Pathway Miner. One of the largest gene association networks involved signal transduction in the growth factor‐MAP kinase pathways. EGFR was validated by real‐time PCR and laminin‐10 mediated cell adhesion activated EGFR in DU‐145 cells. Both laminins appear to be important signal transducers in prostate cancer. Prostate 66: 1381–1390, 2006. © 2006 Wiley‐Liss, Inc.</description><subject>Biological and medical sciences</subject><subject>Calpain - genetics</subject><subject>Calpain - metabolism</subject><subject>cDNA microarray</subject><subject>Cell Adhesion Molecules - physiology</subject><subject>Cell Line, Tumor</subject><subject>DNA, Neoplasm - genetics</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Kalinin</subject><subject>Laminin - physiology</subject><subject>laminin-10</subject><subject>laminin-5</subject><subject>Male</subject><subject>Male genital diseases</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Medical sciences</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>prostate carcinoma cells</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>RNA, Neoplasm - genetics</subject><subject>signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Time Factors</subject><subject>Tumors</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><issn>0270-4137</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqVw4QGQL1yQUtZ2fo9QQQuqaEVBcLMcx0GGxIniVrRvj0NKe-NkrffbnZ1B6JzAkADQ67qp7JACS9gB6hNIIg_ADw5RH2gEnk9Y1EMn1n4COBzoMeqRMAY_jsM-WkxWpTC4EKU22ngBFibbVQRwqTItlirDH8oorNZ1o6zVlcFVjlvdpWtiKRqpTVUKLFVR2FN0lIvCqrPtO0Cv93cvo4k3nY0fRjdTT7IkYJ6KgCZJ5Ms8k9KPQhJnQUzzOBFZkubCT6X7EgFTqYRUkpQ4OzRVsjVKQIRsgK66vdIdYhuV87rRpWg2nABvk-Hthfw3GQdfdHC9Sp2pPbqNwgGXW0BYKYq8EUZqu-diQsEn4DjScd-6UJt_JPn8ebb4E_e6GW2Xar2bEc0XDyMWBfztacxvqf_-OJoHnLEfj7GKTw</recordid><startdate>20060915</startdate><enddate>20060915</enddate><creator>Calaluce, Robert</creator><creator>Beck, Shaleen K.</creator><creator>Bair, Elisabeth L.</creator><creator>Pandey, Ritu</creator><creator>Greer, Kevin A.</creator><creator>Hoying, Adam M.</creator><creator>Hoying, James B.</creator><creator>Mount, David W.</creator><creator>Nagle, Raymond B.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060915</creationdate><title>Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells</title><author>Calaluce, Robert ; Beck, Shaleen K. ; Bair, Elisabeth L. ; Pandey, Ritu ; Greer, Kevin A. ; Hoying, Adam M. ; Hoying, James B. ; Mount, David W. ; Nagle, Raymond B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3953-e7029974cfdcc47618d582f89ad9bfa4bc618a53ebc0bc1b10272bec039310a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological and medical sciences</topic><topic>Calpain - genetics</topic><topic>Calpain - metabolism</topic><topic>cDNA microarray</topic><topic>Cell Adhesion Molecules - physiology</topic><topic>Cell Line, Tumor</topic><topic>DNA, Neoplasm - genetics</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Kalinin</topic><topic>Laminin - physiology</topic><topic>laminin-10</topic><topic>laminin-5</topic><topic>Male</topic><topic>Male genital diseases</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Medical sciences</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>prostate carcinoma cells</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>RNA, Neoplasm - genetics</topic><topic>signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Time Factors</topic><topic>Tumors</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calaluce, Robert</creatorcontrib><creatorcontrib>Beck, Shaleen K.</creatorcontrib><creatorcontrib>Bair, Elisabeth L.</creatorcontrib><creatorcontrib>Pandey, Ritu</creatorcontrib><creatorcontrib>Greer, Kevin A.</creatorcontrib><creatorcontrib>Hoying, Adam M.</creatorcontrib><creatorcontrib>Hoying, James B.</creatorcontrib><creatorcontrib>Mount, David W.</creatorcontrib><creatorcontrib>Nagle, Raymond B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calaluce, Robert</au><au>Beck, Shaleen K.</au><au>Bair, Elisabeth L.</au><au>Pandey, Ritu</au><au>Greer, Kevin A.</au><au>Hoying, Adam M.</au><au>Hoying, James B.</au><au>Mount, David W.</au><au>Nagle, Raymond B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2006-09-15</date><risdate>2006</risdate><volume>66</volume><issue>13</issue><spage>1381</spage><epage>1390</epage><pages>1381-1390</pages><issn>0270-4137</issn><eissn>1097-0045</eissn><coden>PRSTDS</coden><abstract>In prostate cancer progression, the basal lamina switches from predominantly laminin‐5 to laminin‐10. DU‐145 prostate cancer cells were treated with either soluble laminin‐5 (20 ng/ml) or laminin‐10 (1 µg/ml) for 6, 24, and 48 hr. Total RNA was harvested for a 7,500 human cDNA microarray. Hybridizations were carried out in accordance with a 10 sample analysis of variance (ANOVA) statistical model. One thousand one hundred sixteen genes had measurable expression 2 standard deviations above background and 50% of spots for any given sample for all hybridizations were positive. Expression values of significantly varying genes were clustered and a list of 408 genes (P &lt; 0.05) with a 1.5 or greater fold change in at least one time point were chosen for further analysis. Seventy eight changed in a time‐dependent manner with laminin‐10 treatment, 85 changed with laminin‐5, and 13 showed changes with both treatments. The 408 genes that passed a paired t‐test in at least one time‐dependent category were further analyzed using Pathway Miner. One of the largest gene association networks involved signal transduction in the growth factor‐MAP kinase pathways. EGFR was validated by real‐time PCR and laminin‐10 mediated cell adhesion activated EGFR in DU‐145 cells. Both laminins appear to be important signal transducers in prostate cancer. Prostate 66: 1381–1390, 2006. © 2006 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16804886</pmid><doi>10.1002/pros.20393</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-4137
ispartof The Prostate, 2006-09, Vol.66 (13), p.1381-1390
issn 0270-4137
1097-0045
language eng
recordid cdi_crossref_primary_10_1002_pros_20393
source MEDLINE; Access via Wiley Online Library
subjects Biological and medical sciences
Calpain - genetics
Calpain - metabolism
cDNA microarray
Cell Adhesion Molecules - physiology
Cell Line, Tumor
DNA, Neoplasm - genetics
ErbB Receptors - genetics
ErbB Receptors - metabolism
Gene Expression Profiling
Gene Expression Regulation, Neoplastic - drug effects
Gene Expression Regulation, Neoplastic - genetics
Gynecology. Andrology. Obstetrics
Humans
Kalinin
Laminin - physiology
laminin-10
laminin-5
Male
Male genital diseases
MAP Kinase Signaling System - genetics
Medical sciences
Nephrology. Urinary tract diseases
Oligonucleotide Array Sequence Analysis
prostate carcinoma cells
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
RNA, Neoplasm - genetics
signal transduction
Signal Transduction - genetics
Time Factors
Tumors
Tumors of the urinary system
Urinary tract. Prostate gland
title Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20laminin-5%20and%20laminin-10%20mediated%20gene%20expression%20of%20prostate%20carcinoma%20cells&rft.jtitle=The%20Prostate&rft.au=Calaluce,%20Robert&rft.date=2006-09-15&rft.volume=66&rft.issue=13&rft.spage=1381&rft.epage=1390&rft.pages=1381-1390&rft.issn=0270-4137&rft.eissn=1097-0045&rft.coden=PRSTDS&rft_id=info:doi/10.1002/pros.20393&rft_dat=%3Cwiley_cross%3EPROS20393%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16804886&rfr_iscdi=true