Radiative Ignition of Fine-Ammonium Perchlorate Composite Propellants

Radiative ignition of quasi‐homogeneous mixtures of ammonium perchlorate (AP) and hydroxyterminated polybutadiene (HTPB) binder has been investigated experimentally. Solid propellants consisting of fine AP (2 μm) and HTPB binder (~ 76/24% by mass) were ignited by CO2 laser radiation. The lower bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2006-08, Vol.31 (4), p.278-284
Hauptverfasser: Cain, Jeremy, Brewster, M. Quinn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiative ignition of quasi‐homogeneous mixtures of ammonium perchlorate (AP) and hydroxyterminated polybutadiene (HTPB) binder has been investigated experimentally. Solid propellants consisting of fine AP (2 μm) and HTPB binder (~ 76/24% by mass) were ignited by CO2 laser radiation. The lower boundary of a go/no‐go ignition map (minimum ignition time vs. heat flux) was obtained. Opacity was varied by adding carbon black up to 1% by mass. Ignition times ranged from 0.78 s to 0.076 s for incident fluxes ranging from 60 W/cm2 to 400 W/cm2. It was found that AP and HTPB are sufficiently strongly absorbing of 10.6 μm CO2 laser radiation (absorption coefficient ≈250 cm−1) so that the addition of carbon black in amounts typical of catalysts or opacitymodifying agents (up to 1%) would have only a small influence on radiative ignition times at 10.6 μm. A simple theoretical analysis indicated that the ignition time‐flux data are consistent with in‐depth absorption effects. Furthermore, this analysis showed that the assumption of surface absorption is not appropriate, even for this relatively opaque system. For broadband visible/near‐infrared radiation, such as from burning metal/oxide particle systems, the effects of in‐depth absorption would probably be even stronger.
ISSN:0721-3115
1521-4087
DOI:10.1002/prep.200600037