Dilute solution properties of poly(dimethyldiallylammonium chloride) in aqueous sodium chloride solutions

MW fractions of poly(dimethyldiallylammonium chloride) (PDMDAAC) were prepared by preparative size‐exclusion chromatography and characterized by static and dynamic light scattering, viscometry, size‐exclusion chromatography, and electrophoretic light scattering, in 0.50M NaCl solution. The behavior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 1995-05, Vol.33 (7), p.1117-1122
Hauptverfasser: Xia, Jiulin, Dubin, Paul L., Edwards, Shun, Havel, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MW fractions of poly(dimethyldiallylammonium chloride) (PDMDAAC) were prepared by preparative size‐exclusion chromatography and characterized by static and dynamic light scattering, viscometry, size‐exclusion chromatography, and electrophoretic light scattering, in 0.50M NaCl solution. The behavior of fractions with MW < 2 × 105 was as expected for a strong polyelectrolyte in a good solvent, with a Mark‐Houwink exponent of ca. 0.8, and MW‐dependencies of the hydrodynamic radius and the radius of gyration of corresponding magnitude. At higher MW, curvature appears in the MW‐dependencies, which can be best explained by the presence of branching. While this notably lowers the intrinsic viscosity at high MW, the electrophoretic mobility is unchanged regardless of molar mass. Thus, the branched polymers display the electrophoretic free‐draining behavior characteristic of linear polyelectrolytes. ©1995 John Wiley & Sons, Inc.
ISSN:0887-6266
1099-0488
DOI:10.1002/polb.1995.090330715